Globular Clusters in M87

Tutor: Søren S. Larsen

First NEON Archive Observing School
2004

Avet Harutyunyan
Saskia Hekker
Anatoliy Ivantsov
Loredana Vetere
Contents

- Introduction
 - Data reduction
 - Globular Clusters
 - Data Retrieving
- HST ACS
 - HST WFPC2
- Results & Conclusion
Globular Clusters (GCs)
- Milky Way ~ 150
- Very old stars ~ $10-12 \times 10^9$ years
- Typical size ~ few pc

M87
- Elliptical galaxy in Virgo Cluster
- 15 Mpc
Task

Similar properties?

Milky Way Gcs M87 Gcs

Bimodal metallicity distribution?
Science Archive Facility

The ESO/ST-ECF Science Archive is a joint collaboration of the European Southern Observatory (ESO) and the Space Telescope – European Coordinating Facility (ST-ECF).

ESO observational data can be requested after the proprietary period by the astronomical community of the ESO member states and Chile. Please read the official ESO Data Access Policy statement for more information. The entire HST archive is available world-wide. To request data you have to register as an ESO/ST-ECF Archive user. Please acknowledge the use of archive data in your publications.

On-Line Services

- Archive User Profile
- ESO Databases
- ST-ECF Image Galleries
- ESO User Registration
- VLT Science Archive
- Related External Services
- Hubble Space Telescope Data
- Catalogs & DSS
- Tools & Documentation
- HST Science Archive
- ESO's Data Interface
- Digitized Sky Survey
- The Vizier catalogs, CDS
- ESO Photo Gallery

News and updates

- New ESO data-based publication query form (July 2, 2004)
- New MID1 public data packages Eta Car and OH26.5+0.6 available for download (Jun 25, 2004).
- New VISIR commissioning data package with the Galactic Centre observations available for download (May 12, 2004).
- Starting April 1st, 2004 (ESO Period 73), tapes will no longer be supported as archive data distribution media. USB disks will be used for large requests. Read more about this topic.
- Search the ESO and HST archives simultaneously with Querator, V0.5 now released (Oct 10, 2003).
- GOODS ACS V1.0 data release available for download at the ST-ECF mirror archive (Oct 2, 2003).
- New WFPC2 "type B" Associations common release (CADC, STScI, ST-ECF). Please read the description or search the archive directly.
- Having trouble using the Science Archive Facility? Pay a visit to our FAQ section (frequently asked questions).
• Advanced Camera for Surveys (ACS)

• 3 cameras: wide-field camera
 high-resolution camera
 solar-blind camera

• Wavelength range from ultraviolet to near-infrared light

• Installed by astronauts aboard the telescope in Servicing Mission 3B February 2002
Wide Field Planetary Camera 2

- Hubble Space Telescope's "workhorse" instrument
- High-resolution images of distant objects
- 48 filters - covering wavelength range from ultraviolet to near-infrared
- 4 CCDs
- Installed aboard HST during the December 1993 servicing mission
ACS Data Reduction

Multidrizzled F475 Image

Applied Reduction Steps:
• Multidrizzle files with Pyraf script multidrizzle (registering, cleaning, combining images);
• Extract all sources with Sextractor (minarea=9 pix, thresh=3 sigmas, photometric aperture diametre= 3 pix, gain=exposure time);
• Plots and cuts.
Correction for reddening law is applied.
ACS Data Reduction

Color histogram

![Graph showing a color histogram with the x-axis labeled 'color (F475W-F850LP)' and the y-axis labeled 'Count'.]
The color histogram lays mainly in interval of colors between 0.5 and 1.3. We have adopted age of 1×10^{10} years.

Theoretical isochrones in the HST/WFPC2 Abmag system were taken from http://pleiadi.pd.astro.it/
Abundance=[Fe/H]=\log_{10}\left(\frac{Z}{Z_{\odot}}\right)

The plot is for age of 1e10 years.
ACS Data Reduction

Abundance histogram

Bimodal distribution of abundances!
study of radial trends in the properties of the M87

data from the ESO/ST-ECF archive

need to cover a range of distances from the M87
center

=> 30 arcmin search box

=> lot of data returned from search...

"prog. 6844 is particularly interesting for our
pose..."

we got observations at 1.7, 2.3, 8.0, 12.0, 15.0 arcmin... Søren
and a gap at a radius ~ 4 arcmin... would be nice to have also that

"also of interest may be data from prog. 7274..."

-- Søren
WFPC2 – Detector, Filters

F555W – 5252A, 1222.5A ~ Johnson V
F814W – 8269A, 1758.0A ~ Cousins I

4 CCD chips, each 800 x 800 pixels
Planetary Camera (PC) chip and 3 Wide Field (WF) chips
PC chip scale: 0.04555 arcsec per pixel
WF chip scale: 0.1 arcsec per pixel
Data format

GEIS images provided by the archive pipeline
wfpc2 associations - “un-biased”, “flat-fielded”, combined (!!!)
not directly readable by iraf => conversion to the iraf format
each file contains 4 extensions (4 chips) => 1PC .fits & 3WF .fits
observations at 7 different radii, 2 filters per radius,
3 .fits files per filter...

= 42 .fits files in total

Scripts!
Reductions and Photometry

all images have been registered, shifted and cut

photometric zero points VEGAMAG system

Photometry with Sextractor:
not that complicated, fast, flexible, dual image mode

Aperture size of 5pix for photometry

Detection threshold of 4
Contamination

Need to take care of contamination by background galaxies and stars. We used the Hubble Deep Field to estimate contamination by galaxies and stars.

We had slightly different filters: F606w instead of F555w.
Color histograms

a histogram per radius from the M87 center
(histograms at 1.7, 2.3, 4.3, 8.0, 10.0, 12.0, 15.0 arcmins)
Conclusions

ACS compared with WFPC2

ACS --> 50 milli arcsec/pixel
WFPC --> 100 milli arcsec/pixel

Comparing data M87 with data Milkyway

(The Globular Cluster System of the Galaxy. IV. The halo and disk subsystem ' by Robert Zinn)

• Luminosity function
• Abundance
• Number of Globular Clusters
Luminosity Function

\[M_{V(M87)} = M_V + 5 \log(d/10 \text{pc}) \sim 24 \text{ mag} \]
\[d = 15 \text{ Mpc} \]

F475W bluer than Mv \(\rightarrow\) fainter

No aperture correction performed!
Abundances

Fig. 1.—In the upper diagram, $|Z|$ is plotted against $[\text{Fe/H}]$ for the 112 globular clusters of known distance. Notice that there are no clusters in the zone $20 \leq |Z| \leq 37$ kpc and that the $|Z|$ distribution changes suddenly at $[\text{Fe/H}] \approx -1$. The lower diagram is a histogram of the values of $[\text{Fe/H}]$ for all 121 clusters in Table 1. Notice that the valley in the distribution over $[\text{Fe/H}]$ occurs at the same value as the sudden change in the $|Z|$ distribution.

more metal rich GCs in M87

-->
Number of Globular Clusters in M87

Milky Way --> ~150 Globular Clusters
M87 --> ~ 1282 Globular Clusters (~556 ACS, ~726 WFPC2) in the small FOVs considered
Further Research

- Total Number of Globular Clusters in M87 (per cubic kpc)
- Divide between “blue” and “red” Globular Clusters
- Abundances at outer radii of M87
- More accurate isochrones (not accurate in the blue region)
- ACS data for the outer radii of M87