Globular Clusters and Low-Mass X-Ray Binaries in M87

Daniel-Jens Kusterer, Amelia Bayo, Sinan Alis, Genoveva Micheva
Tutor: Andrés Jordán

ESO NEON Summer School

NEON 2006 - 08.09.2006
Outline

1. Introduction
 - Motivation
 - Globular Clusters
 - Low-Mass X-Ray Binaries
 - Instrument introduction

2. Data Analysis
 - HST Data
 - Chandra Data

3. Results and Conclusions
 - Discussion
 - Results
Motivation

- In Milky Way globular clusters form LMXBs efficiently
 - Small sample!
 - Look at M87
- M87 richest globular cluster system in local universe
 - Increased GC sample of ~ 14000
 - Study properties of GCs hosting LMXBs
Motivation

- In Milky Way globular clusters form LMXBs efficiently
 - Small sample!
 → Look at M87
- M87 richest globular cluster system in local universe
 → Increased GC sample of \(\sim 14000 \)
 → Study properties of GCs hosting LMXBs
Globular Clusters

- Spherical collection of stars orbiting a galaxy
 - Small and dense
 - Dust and gas free
 - Diameter independent of mass
- Old systems, mainly population II stars
- Luminosity Function used as standard candle
Globular Clusters

- Spherical collection of stars orbiting a galaxy
 - Small and dense
 - Dust and gas free
 - Diameter independent of mass
- Old systems, mainly population II stars
- Luminosity Function used as standard candle
Globular Clusters

- Spherical collection of stars orbiting a galaxy
 - Small and dense
 - Dust and gas free
 - Diameter independent of mass
- Old systems, mainly population II stars
- Luminosity Function used as standard candle
Low-Mass X-Ray Binaries

- Binary Systems
 - Neutron star or blackhole primary
 - Late-type secondary $M \lesssim 2.0 M_{\odot}$
- Mass overflow (Roche lobe filling)
 - $L \sim 10^{35} - 10^{39}$ erg/s
 - Older than 10^9 yr
- Possible formation
 - Direct formation
 - Tidal capture
 - Binary exchange processes
Low-Mass X-Ray Binaries

- **Binary Systems**
 - Neutron star or blackhole primary
 - Late-type secondary \(M \lesssim 2.0 M_\odot \)
- Mass overflow (Roche lobe filling)
- \(L \sim 10^{35} - 10^{39} \text{ erg/s} \)
- Older than \(10^9 \text{ yr} \)
- Possible formation:
 - Direct formation
 - Tidal capture
 - Binary exchange processes
Low-Mass X-Ray Binaries

- Binary Systems
 - Neutron star or blackhole primary
 - Late-type secondary $M \lesssim 2.0M_\odot$

- Mass overflow (Roche lobe filling)
 - $L \sim 10^{35} - 10^{39}$ erg/s
 - Older than 10^9 yr

- Possible formation
 - Direct formation
 - Tidal capture
 - Binary exchange processes
Optical and X-Ray data

ACS Wide Field Camera
202” × 202” FoV
2×560s + 90s F850LP (≃ z band)
2×375s F475W (≃ g band)

ACIS Imaging mode
8’ × 8’ FoV (S3)
105 ks exposure time
Obtaining optical data
Obtaining optical data

- Obtain data from http://archive.stsci.edu/hst

- Program ID: GO-9401

- Program PI: Patrick Côté
Processing optical data

- **Software**: PyRAF
- **Necessity of drizzling with multidrizzle (calibration files)**
 - corrects for built-in geometric distortion (off-axis location of instrument)
 - restores information lost due to undersampling
 - combines dithered images
 - filters cosmic rays
Processing optical data

- Software: SExtractor
- Source extracting in both bands
 - DETECT_MINAREA 5
 - DETECT_THRESH 3
 - PHOT_APERTURES 4 8 10 16
 - SATUR_LEVEL 65000
 - MAGZEROPOINT 26.068 (F475W, AB)
 - MAGZEROPOINT 24.862 (F850LP, AB)
 - PIXEL_SCALE 0.049
 - SEEING_FWHM 0.098
 - BACK_SIZE 32
Processing optical data

- **Software**: SExtractor
- **Source extracting in both bands**
 - DETECT_MINAREA 5
 - DETECT_THRESH 3
 - PHOT_APERTURES 4 8 10 16
 - SATUR_LEVEL 65000
 - MAGZEROPOINT 26.068 (F475W, AB)
 - MAGZEROPOINT 24.862 (F850LP, AB)
 - PIXEL_SCALE 0.049
 - SEEING_FWHM 0.098
 - BACK_SIZE 32
Processing optical data

- 2608 sources (F475W)
- 2372 sources (F850LP)
- 1911 sources (cross-matched) with TOPCAT
Processing optical data

- 2608 sources (F475W)
- 2372 sources (F850LP)
- 1911 sources (cross-matched) with TOPCAT
Filtering optical data

- Aladin filter applied to cross-matched catalog
 - $0.5 \leq g-z \leq 1.9$
 - $m_z > 19$
 - $m_g > 19$
 - $0 < \text{elongation} < 2$
Filtering optical data

Filtering optical data

$0.5 \leq g-z \leq 1.9$

$m_z > 19$

$m_g > 19$

$0 < \text{elongation} < 2$

DJ.Kusterer, A.Bayo, S.Alis, G.Micheva

GCs and LMXBs in M87
Analyzing optical data

- Calculate distance
 - \(m_z - M_z = 5 \log d - 5 + A_z \)
 - \(E(B - V) = 0.022 \) (taken from NED database)
 - \(A_z = 1.485 \times E(B - V) \) (from Jordán et al., 2004)
 - \(m_{\text{peak}} \approx 22.8 \) (for the z band)
 - \((M_{\text{peak}}/L_{\text{peak}})_z \approx 1.5 \times (M_\odot/L_\odot) \) (from PÉGASE models)
 - \(M_{\text{peak}} - M_\odot = 2.5 \log(L_\odot/L_{\text{peak}}) \)

Where \(m, M, A_z \) are apparent and absolute magnitudes and extinction, resp.
Analyzing optical data

- Calculate distance

16.1 Mpc
Analyzing optical data

- Two distinct populations
 - \(g - z < 1.2 \)
 - \(g - z > 1.2 \)

Two different mean metallicities
Analyzing optical data

- Comparison between inner and outer part of the population
 - Define two regions
 - No significant shift of the peaks
 - BUT: More metal-rich in inner part
Analyzing optical data

- Comparison between inner and outer part of the population
 - Define two regions
 - No significant shift of the peaks
 - BUT: More metal-rich in inner part
Analyzing optical data

- Comparison between inner and outer part of the population
 - Define two regions
 - No significant shift of the peaks
 - BUT: More metal-rich in inner part
Obtaining X-ray data

HST Data

- **Target Name:** M87
- **Name Resolver:** SIMBAD/NED
- **RA/Long:** 12 30 49.42
- **Dec/Lat:** -12 23 28.04
- **Radius:** 10
- **Equinox:** 2000
- **Proposal Number:** 2707
- **PI Name:**
- **Observer Name:**
- **Exposure Time (ks):**
- **Status:** Partially Observed
- **Science Category:** Solar System, Stars and WD, WD Binaries and CV, BH and NS Binaries, SN, SNR and Isolated NS
- **Instrument:** ACIS-I, ACIS-S, HRC-I, HRC-S
- **Grating:** None, LETG, HETG
- **Type:** TOO, CAL, GO, GTO, DDT
- **Observing Cycle:** A00, A01, A02, A03, A04

Chandra Data

- **Target Name:** M87
- **Name Resolver:** SIMBAD/NED
- **RA/Long:** 12 30 49.42
- **Dec/Lat:** -12 23 28.04
- **Radius:** 10
- **Equinox:** 2000
- **Proposal Number:** 2707
- **PI Name:**
- **Observer Name:**
- **Exposure Time (ks):**
- **Status:** Partially Observed
- **Science Category:** Solar System, Stars and WD, WD Binaries and CV, BH and NS Binaries, SN, SNR and Isolated NS
- **Instrument:** ACIS-I, ACIS-S, HRC-I, HRC-S
- **Grating:** None, LETG, HETG
- **Type:** TOO, CAL, GO, GTO, DDT
- **Observing Cycle:** A00, A01, A02, A03, A04

For online support please contact the CXC Helpdesk.

DJ.Kusterer, A.Bayo, S.Alis, G.Micheva

GCs and LMXBs in M87
Obtaining X-ray data

- **Obtain data from**
 - http://cda.harvard.edu/chaser/dispatchOcat.do
- **Obs ID**: 2707
- **Program PI**: Patrick Côté
Processing X-ray data

- One event per photon
- Photon energy, position & time of arrival stored
 → Possibility of obtaining spectra and images
Processing X-ray data

- One event per photon
- Photon energy, position & time of arrival stored
 → Possibility of obtaining spectra and images

DJ.Kusterer, A.Bayo, S.Alis, G.Micheva GCs and LMXBs in M87
Processing X-ray data

- 6 ACIS chips
- Using Software CIAO to:
 - Cut to S3
 - Restrict the image to HST FoV
 - Construct the background light curve (S1)
 - No background flares
Processing X-ray data

- 6 ACIS chips
- Using Software CIAO to:
 - Cut to S3
 - Restrict the image to HST FoV
 - Construct the background light curve (S1)
 → No background flares
Processing X-ray data

- 6 ACIS chips
- Using Software CIAO to:
 - Cut to S3
 - Restrict the image to HST FoV
 - Construct the background light curve (S1)
 → No background flares
Processing X-ray data

- `celldetect` source extraction algorithm (alt. `wavdetect`)
- Manual removal of problematic regions
Processing X-ray data

- *celldetect* source extraction algorithm (alt. *wavdetect*)
- Manual removal of problematic regions
Analyzing X-ray data

- LF shape compatible with LMXB population, peak artificial
- Higher luminosities suggest possible BH presence
Cross-matching optical & X-rays

- RGB image (ds9)
 - Red: F850LP (\sim Sloan z)
 - Green: F475W (\sim Sloan g)
 - Blue: X-ray

- Cross-matching the catalogues
 - Green: Optical catalogue
 - White: X-ray catalogue
 - Red: Cross-matched
Cross-matching optical & X-rays

- RGB image (ds9)
 - Red: F850LP (\approx Sloan z)
 - Green: F475W (\approx Sloan g)
 - Blue: X-ray

- Cross-matching the catalogues
 - Green: Optical catalogue
 - White: X-ray catalogue
 - Red: Cross-matched
Cross-matching optical & X-rays

- Cross-match performed with TOPCAT
- Using RA & DEC for matching (0.1” threshold)
 - 1769 optical sources
 - 179 X-ray sources
 - 57 cross-matches
Properties of optical counterparts

- Redder in color
- Brighter in g & z mag
- \(\sim 2 \) times more frequent in the red peak
Properties of optical counterparts

- Different behaviour of two populations
 - GCs containing LMXBs are brighter
- Higher density favours LMXB formation
THANK YOU!