The Gas-Star Cycle in Nearby Early-Types: UV, Optical, CO, HI

Martin Bureau, Oxford University

SAURON

CO
(F. Combes, A. Crocker, L.M. Young)

GALEX
(H. Jeong, Y-K. Sheen, S.K. Yi)

Plans: Optical/SAURON: Stellar populations in E/S0s and KDCs
CO/BIMA, HI: Star formation fuel, gas accretion
UV/GALEX, HI: Current and recent star formation

Summary

Martin Bureau, Oxford University
The Gas-Star Cycle in Nearby Early-Types: UV, Optical, CO, HI

Martin Bureau, Oxford University

SAURON

CO
(F. Combes, A. Crocker, L.M. Young)

GALEX
(H. Jeong, Y-K. Sheen, S.K. Yi)

Plans: Optical/SAURON: Stellar populations in E/S0s and KDCs
CO/BIMA, HI: Star formation fuel, gas accretion
UV/GALEX, HI: Current and recent star formation

Summary

Martin Bureau, Oxford University
SAURON: Broad Aims

Goals:
- Mass assembly history (gas, stars, kinematics)
- Chemical enrichment history (age, metallicity, SFH)

Context:
- Hierarchical structure formation (merging, harassment, ...)
- Subsequent dynamical evolution (BH/triaxiality-driven, ...)

⇒ Exploit "fossil record" (near-field cosmology)
Main results:

- Standard:
 Homogeneously old, decreasing metallicity (larger spread among S0s)

- Occasional:
 Young core/body, increasing metallicity

- Isoindices:
 Mg_b isoindex contours often flatter than light (40%; rotators)
Stellar Pop.: Classic KDCs
(McDermid et al. 06)

Classic KDCs:
- Large: kpc' s(0.3-0.4 R_e)
- Massive
- Coeval: homogeneously old
- Non-rotators

Formation:
- Early (dissipative) major merging, then quiescent?
- Recent dissipationless major merging (dry mergers)?
Stellar Pop.: Compact KDCs
(McDermid et al. 06)

Compact KDCs:
- Small: 100 pc’s (≤ 0.1 R_e)
- Lightweight
- Young: distinct, younger toward center (contrary to ionized gas)
- Rotators

Formation:
- Recent dissipative minor merging/accretion?

SAURON-OASIS Data:
KDCs: Age-Size Dichotomy
(McDermid et al. 06)

SAURON-OASIS Data: Central pixel

Compact KDCs:
- Small: 100 pc' $s(\leq 0.1 R_e)$
- Lightweight
- Young: distinct, increasingly young toward center
- Rotators

Classic KDCs:
- Large: kpc' $s(0.3-0.4 R_e)$
- Massive
- Coeval: homogeneously old
- Non-rotators
The Gas-Star Cycle in Nearby Early-Types: UV, Optical, CO, HI

Martin Bureau, Oxford University

SAURON

CO
(F. Combes, A. Crocker, L.M. Young)

GALEX
(H. Jeong, Y-K. Sheen, S.K. Yi)

Plans: Optical/SAURON: Stellar populations in E/S0s and KDCs
CO/BIMA, HI: Star formation fuel, gas accretion
UV/GALEX, HI: Current and recent star formation

Summary
CO: Single-Dish Survey
(Combes, Young & Bureau 07)

IRAM 30m Survey:
- CO(1-0), 23” FWHM
 CO (2-1), 12” FWHM
- 39/48 SAURON E/SOs
- Sensitivity: 2-4 mK (30 km s\(^{-1}\))
 1-5 x 10\(^7\) M\(_\odot\)
- Literature results

Results:
- 28% detection rate (12/43)
- As expected for L, type
- \(<\text{CO}(2-1)/\text{CO}(1-0)\> \approx 1.4
CO: Dust, FIR, SF
(Combes, Young & Bureau 07)

Correlations:
- More CO for ...
 - Low L, σ, Fe, Mg, B-V, age
 - High type, Hβ, Hα

- Extension of:
 - M_{H2} – FIR correlation
 - Kennicutt - Schmidt relation
- **SF:**
 - High SFE
 - IR-excess

Martin Bureau, Oxford University
Central Disks

CO: Central Disks
(Young, Bureau & Cappellari 08; Bureau & Young, in prep)

Central Disks:

- CO cospatial with young stars and central stellar/gas disk
- CO and stars/gas co-rotating

CRs:

- CO roughly cospatial with young stars and CR/gas (generally less extended)
- CO and stars/gas kinematics unrelated? (triggered SF?)
CO: Central Disks
(Young, Bureau & Cappellari 08; Bureau & Young, in prep)

BIMA-SAURON Data: NGC4459

Central Disks:
• CO cospatial with young stars and central stellar/gas disk
• CO and stars/gas co-rotating

CRs:
• CO roughly cospatial with young stars and CR/gas (generally less extended)
• CO and stars/gas kinematics unrelated? (triggered SF?)
CO: Central Disks
(Young, Bureau & Cappellari 08; Bureau & Young, in prep)

Central Disks:
- CO cospatial with young stars and central stellar/gas disk
- CO and stars/gas co-rotating

CRs:
- CO roughly cospatial with young stars and CR/gas (generally less extended)
- CO and stars/gas kinematics unrelated? (triggered SF?)

BIMA-SAURON Data:
NGC3032

“age”
CO: Central Disks
(Young, Bureau & Cappellari 08; Bureau & Young, in prep)

Central Disks:
• CO cospatial with young stars and central stellar/gas disk
• CO and stars/gas co-rotating

CRs:
• CO roughly cospatial with young stars and CR/gas (generally less extended)
• CO and stars/gas kinematics unrelated? (triggered SF?)

BIMA-SAURON Data: NGC 4150

“age”

Hβ

SAURON

V★

V_co

Martin Bureau, Oxford University
CO: SF Sequence?
(Crocker et al., in prep)

PdBI-SAURON Data: NGC524

SF sequence:
• Current SF (low [OIII]/Hβ)
• Recent SF (high Hβ linestrength)
• No/weak SF (high [OIII]/Hβ, low Hβ)
CO: SF Sequence?
(Crocker et al., in prep)

SF sequence:
• Current SF (low [OIII]/Hβ)
• Recent SF (high Hβ linestrength)
• No/weak SF (high [OIII]/Hβ, low Hβ)

PdBI-SAURON Data: NGC4477

Martin Bureau, Oxford University
CO: External Accretion

NGC2685, NGC2768:
- Generic accretion model for polar rings (although likely a polar disk)

Generally:
- Disturbed HI
- Lack of strong correlations CO-optical (e.g. scale, L, ...)
- Some galaxies with CO but no HI!
HI: NGC128, 3203, 7332, 1596
(Bureau & Chung 06; Chung et al. 06; Chung et al., in prep)

VLA + ATCA:

HI Structure:
- NGC128: Distant HI-rich companion
- NGC7332: Nearby HI-rich companion
- NGC3203: Interacting? HI-rich companion
- NGC1596: Interacting HI-rich companion

⇒ Circumstantial evidence for cold accretion and/or minor mergers

Martin Bureau, Oxford University
Atlas3D:

- Complete volume-limited E/SO sample:
 - 264 E/S0s within ≈ 40 Mpc, complete WHT/SAURON data
 (≈ 215 new Northern targets; 38 nights)
 - IRAM 30m CO survey ongoing... 80% complete (213/264)
 (20% detection rate; no significant cluster-field difference)
 (no detection in slow rotators)
 - CARMA CO follow-up ongoing... starts July 2008
 (D array; Berkeley commitment; 130 hours/11 objects this term)

✗ Other diagnostics: multiple transitions, multiple species
✗ Perfect benchmark for ALMA

Martin Bureau, Oxford University
The Gas-Star Cycle in Nearby Early-Types: UV, Optical, CO, HI

Martin Bureau, Oxford University

SAURON

CO
(F. Combes, A. Crocker, L.M. Young)

GALEX
(H. Jeong, Y-K. Sheen, S.K. Yi)

Plans: Optical/SAURON: Stellar populations in E/S0s and KDCs CO/BIMA, HI: Star formation fuel, gas accretion UV/GALEX, HI: Current and recent star formation Summary

Martin Bureau, Oxford University
GALEX: UV Emission in E/S0s
(Jeong et al., in prep)

Normal:

UV Upturn:

Martin Bureau, Oxford University
GALEX: Standard
(Jeong et al., in prep)

UV Morphologies: Standard
GALEX: Exceptional
(Jeong et al., in prep)

UV Morphologies: Exceptional

Martin Bureau, Oxford University
NGC2974: UV Morphology - Kin.
(Jeong et al. 07)

Distribution:
- Young stars and RSF (UV bright and blue) in centre + outer ring
- Possible larger partial ring

Barred Dynamics:
- [OIII] nuclear and inner rings
- Imply unique pattern speed
⇒ Bar-driven SF (single pattern speed)
NGC2974: UV Morphology - Kin.
(Jeong et al. 07)

Optical-UV Imaging:

Distribution:
- Young stars and RSF (UV bright and blue) in centre + outer ring
- Possible larger partial ring

Barred Dynamics:
- [OIII] nuclear and inner rings
- Imply unique pattern speed
 ⇒ Bar-driven SF
 (single pattern speed)

Martin Bureau, Oxford University
NGC2974: Stellar Pop. Modeling
(Jeong et al. 07)

Martin Bureau, Oxford University
Other Cases: NGC2273
(Jeong et al., in prep)

GALEX-MDM:

Martin Bureau, Oxford University
Other Cases: NGC2273
(Jeong et al., in prep)

GALEX-MDM:

Martin Bureau, Oxford University
Other Cases: NGC2273
(Jeong et al., in prep)

GALEX-MDM:

![Images of NGC2273 showing various emissions and distributions](Image)

- **I**
- **V**
- **Hβ**
- **VHβ**
- **[OIII]/Hβ**

Petitpas & Wilson 02

Martin Bureau, Oxford University
Other Cases: NGC4274
(Jeong et al., in prep)

GALEX-MDM:

Martin Bureau, Oxford University
Other Cases: NGC4274

(Jeong et al., in prep)

SAURON:

\[V \star \]

\[\sigma \star \]

\[V_{\text{H}\beta} \]

\[\sigma_{\text{H}\beta} \]

\[\text{[OIII]/H}\beta \]

\[(\text{Falcon-Barroso et al. 06}) \]

\[I_{\text{CO}} \]

\[V_{\text{CO}} \]

\[(\text{Koda et al. 05}) \]

Martin Bureau, Oxford University
Other Cases: NGC5953

(Jeong et al., in prep)

SAURON:

HI

CO

V_{HI}

V_{CO}

(Falcon-Barroso et al. 06)

(Iono et al. 05)

Martin Bureau, Oxford University
The Gas-Star Cycle in Nearby Early-Types: UV, Optical, CO, HI

Martin Bureau, Oxford University

SAURON
(R. Bacon, M. Cappellari, R.L. Davies, E. Emsellem, J. Falcon-Barroso, D. Krajnovic, M. Sarzi, H. Kuntschner, R.M. McDermid,
R.F. Peletier, G. van de Ven, P.T. de Zeeuw)

CO
(F. Combes, A. Crocker, L.M. Young)

GALEX
(H. Jeong, Y-K. Sheen, S.K. Yi)

Plans: Optical/SAURON: Stellar populations in E/S0s and KDCs
CO/BIMA, HI: Star formation fuel, gas accretion
UV/GALEX, HI: Current and recent star formation

Summary
(Preliminary) Conclusions

- **KDCs:**
 - Classic KDCs: Large, massive, homogeneously old, non-rotator
 (early dissipational/late dissipationless major merger)
 - Compact KDCs: Small, lightweight, young, rotator
 (minor merger/gas accretion)

- **CO:**
 - Central disks: CO cospatial/corotating with gas/young stars
 - Central CRs: CO roughly cospatial with gas/young stars
 (generally less extended), unrelated to CRs?
 - SF sequence? Current, recent, no/weak SF...
 ✗ Still in exploratory phase, building up sample...

- **UV:**
 - Resolved UV-optical colors: Constraints on age, mass fraction, and surface density of young stars
 - Recent SF correlated with stellar/ionised-gas/CO dynamics
 (disk formation?) (both secular and externally-triggered SF)

Martin Bureau, Oxford University
Conclusions

- **KDCs:**
 - Classic KDCs: Large, massive, homogeneously old, non-rotator
 (early dissipational/late dissipationless major merger)
 - Compact KDCs: Small, lightweight, young, rotator

- **CO:**
 - Central disks: CO cospatial/corotating with gas/young stars
 - Central CRs: CO roughly cospatial with gas/young stars
 (generally less extended), unrelated to CRs ?
 - SF sequence?
 Current, recent, no/weak SF...
 ✗ Still in exploratory phase, building up sample...

- **UV:**
 - Resolved UV-optical colors:
 Constraints on age, mass fraction, and surface density of young stars
 - Recent SF correlated with stellar/ionised-gas/CO dynamics
 (disk formation ?) (both secular and externally-triggered SF)

Great synergy
optical IFU – mm interferometry
(and HI, UV, ...)
(do not forget the stars!)

Martin Bureau, Oxford University