Kinematics of collisional debris

Pierre-Alain Duc, AIM, CEA-CNRS-U. Paris Diderot Frédéric Bournaud, AIM, CEA-CNRS-U. Paris Diderot Elias Brinks, U. Hertfordshire

Médéric Boquien, U. Massachusetts
Peter Weilbacher, Potsdam
Philippe Amram, LAM
Jonathan Braine, Observatoire de Bordeaux
Ute Lisenfeld, U. Granada
Vassilis Charmandaris, U. Crete

What?

- A giant collider to probe the <u>nature and distribution</u> of the various components of galaxies, including dark matter
- A laboratory to probe <u>star-formation</u> in an environment a priori completely different than that of galactic disks
- The nursery of SSCs/GCs, TDGs, UCDs,...

- A multi-wavelength approach:
- ✓UV/GALEX, MIR/Spitzer, broad-band optical/NIR imaging
- √3D datacubes: HI/VLA-C+D,B; CO IRAM/OVRO; Halpha CFHT/ESO/FP
- Detailed kinematical studies: identification of kinematically independent objects
- The support of <u>numerical simulations</u>

Input from numerical simulations

Input from numerical simulations

The need for 3D data

Long slit spectroscopy of tidal tails: fake velocities gradients in tidal condensations

A change of the velocity gradient before the apparent tip of the tail tells about a projection effect

Disentangling real rotation motions from projected streaming motions along the tails

A change of the velocity gradient before the apparent tip of the tail tells about a projection effect

(Real) decoupled components in tidal debris

(Real) decoupled components in tidal debris

Probing the distribution of dark matter in and around galaxies with collisional debris

Formation of NGC5291 Numerical simulation

CEA-CCRT/CNRS-AIM/F. Bournaud et al.

Probing the distribution of dark matter in and around galaxies with collisional debris

NGC5291N

$$M_{lum} = M_{HI} + M_{H2/CO} + M_{stars}$$
$$8.8x10^8 = 5.7x10^8 + 2x10^8 + 1.1x10^8$$

$$M_{dyn} = 3 \times M_{lum}$$
 (for 3 objects)

M(H2/CO) wrong by a factor of at least 10 despite a relatively high metallicity?

Missing mass found in other interacting systems

Origin of the missing mass

Origin of the missing mass

✓ In <u>spiral disks</u>! Less than 10% comes from the cosmological halo: not conventional DM

✓ Alternative theories:
MOND may reproduce the formation of TDGs and their internal kinematics: Milgrom (2007), Gentile at al. (2007)

Tiret et al., 2008

A study of star formation in an unusual environment:

Star-formation associated with kinematically decoupled components in the tidal debris (not necessary at local HI peak)

A study of structure formation:

SSCs/GCs, TDGs

A cosmological test:

(An extended cosmological-like Dark Matter halo required to form TDGs)

The unexpected fraction of missing mass in collisional debris reveal the presence of "dark baryons" in spiral disks or is a challenge to CDM

