Integral Field Spectrography

Techniques & Specifics

Eric Emsellem

GALPAC - CRAL

emsellem@obs.univ-lyon1.fr
Contributions

- Pierre Ferruit
- Richard McDermid
- Martin Roth
- &
- Jeremy Allington-Smith
- Roland Bacon
- Guy Monnet
- James Turner
- Peter Weilbacher
Menu

- Historical perspective
 - 1D – 2D – 2.5D and 3D
- Basics of 3D spectroscopy
 - Techniques and examples
- Specifics
- From sky to cubes
 - Basic principles
- A (short) word on Softwares
- Concluding remarks
3D Spectrography

Historical perspective
From 1D to 2D

- Aperture spectrometry ➔ Long-slit spectroscopy
- Efficient use of
 - 2D photographic plates
 - CCDs
- « Easy » data reduction

NGC 681
Burbidge et al. 1965

\[V \ [\text{km/s}] \]
\[R \ [\text{arcsec}] \]

Focal Plane
Long Slit
Collimator
Dispersor
Camera
Detector

IFUs
Why is 2D not enough?

- Morphology of real object rarely follows slit geometry
- Centring on the target
- Light losses
- The slit effect
- Spectral resolution depends on the slit itself
How to squeeze 3D in 2D?

- Modern detectors are 2D (optical, near-infrared)

- We can thus either fix one spatial or one spectral dimension and scan with time:
 - Fabry-Perot interferometers
 - Scanning long-slit spectrographs

- But also:
 - Fourier Transform spectrometers
 - Hadamar Transform spectrometers (masks)
A Fabry-Perot etalon acts as an interference filter:
- Incidence θ
- Wavelength λ
- Index n
- Inter plate t

Fabry Perot interferometers

- Tough data reduction (but doable)
- Very efficient for emission lines!

 - TAURUS (AAT, WHT), HIFI (CFHT)
 - CIGALE (3D NTT)
 - SAO (6m)

Carranza et al. 1968

Tully 1973

IFUs
Scanning: more space

- FPs limited to single emission lines
- Not ideal to tackle continuum + absorption lines
- Problem of TIME scanning: what about long-slits?

Fourier transform spectrometer

- **Frequency scanning:**
 - Bear at CFHT: 2 arms interferometer

![Diagram of interferometer setup]

- The Galactic center
 (Maillard, Paumard)
Problems linked with the scanning:

- Variation of the observing conditions
 - Data characteristics & controls?
- Accuracy of positioning to rebuild the 3D data
- Need of relatively bright objects

Inhomogeneities in the reconstructed datacubes
3D Spectroscopy
The Dawn of Speciation
On the way to real 3D

- 1960’s: aperture photometry to long-slit
 - Wide spectral range

- 1970’s: Fabry Perot interferometers
 - Large field of view, but narrow spectral range

- 1980’s:
 - Advent of modern CCDs
 - New ways to split the field
 - Using Fibers
 - Using micro-lenses
 - …
Advantage of true IFUs

- Large spectral range (but smaller FOV than FPs)
- Multiplex advantage
 - Save telescope time (not necessarily)
 - Homogeneous data (?)
 - Spatial location and PSF can be measured a posteriori
- Spectrophotometry!

Spaxel
Optical/Near Infrared spectroscopy

- The Atmosphere (ground-based instruments)
 - Transparency variations

- Sky Background: emission and absorption

- Spatial resolution: Point Spread Function
 - Typical PSF widths:
 - 0.5 – 2 arcsec in the optical
 - 0.3 – 1 arcsec in the NIR
 - But usually not a Gaussian-like PSF
 - Possibility to fully exploit Adaptive Optics

- Differential refraction
Optical/Near Infrared spectroscopy

- **Specifics:**
 - Spectra with Continuum and absorption lines

- **Resolutions**
 - Spectral = Shannon (Nyquist)
 - Usually FWHM or σ
 - Spatial = SPAXEL shape?
 - Difference between resolution and sampling!
 - Usually FWHM or σ
Splitting the field

- Fibers!
 - Few 100s fibers
 - Possibility of sky fibers
 - 0.3-1 arcsec per lens

Vanderriest, C. (1980), PASP 92, 858
"Fiber-Optics Dissector for Spectroscopy of Nebulosities around Quasars and similar Objects"

"Integral Field Spectrography with optical Fibers at the C.F.H. Telescope"
Fiber fed spectrographs

- INTEGRAL @ the WHT (4.2m)
 - Several configurations
 - Dedicated Sky fibers
Fiber-fed spectrographs

- **Advantages:**
 - Simplified output onto a slit
 - Full use of the CCD for the spectral coverage

- **Disadvantages:**
 - Light losses, performances
 - Stability of the instrument
 - Spectrophotometry?
The TIGER concept: The trick

Uniform illumination at the entrance of the array

The array samples the field and focus the light into micro-pupils

The array is rotated to avoid overlapping between the spectra

The micro-pupils are dispersed via a classical spectrograph

A filter limits the Y range
OASIS Raw Exposures

Flatfield exposure

Micropupil exposure

Object exposure

Neon Calibration exposure
Lens Array - Raw Data

Micropupil

Arc

SAURON - WHT

Continuum

Galaxy
TIGER-like spectrographs

- TIGER (CFHT), OASIS (CFHT/WHT)
 ... SAURON (WHT), SNIFs (UH 2.2m)
- OSIRIS (Keck) in the NIR

- Advantages:
 - Spatial & spectral information
 - No light loss (in principle)
 - Spatial scale can be easily changed

- Disadvantages:
 - Complex data format
 - Requires clean separation of spectra on the CCD
 - Not optimal use of the CCD pixels
Fiber + Lenses

- PMAS, CIRPASS
- VIMOS, FLAMES, GMOS

Advantages:
- Separation of spatial and spectral information
- No light loss
- Reconfiguration of SPAXELS on the detectors
- Better controled stability (?)

Disadvantages:
- Fibers…
- Spectrophotometric properties?
IFU Techniques: Optical Fibres

Pros:
- Flexible design
- Optimise CCD area

Cons:
- Poorer throughput
- Calibration-heavy

PMAS – Calar Alto
GMOS-IFU

- 0.4 - 1.0μm
- Hexagonal - contiguous
- 5 x 7 arcsec @ 0.2 arcsec
VIMOS-IFU

- 0.4 - 1μm
- 54x54/27x27 arcsec @ 0.7/0.3"
- 4 x EEV CCDs
VIMOS Raw Data
IFU Techniques: Optical Fibres

FLAMES - VLT
IFU Techniques: Principles of a Slicer

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>90</td>
<td>120</td>
</tr>
</tbody>
</table>
IFU Techniques: Image Slicer

Pros:
- Compact design
- High throughput
- “Easy” cryogenics

Cons:
- Difficult to manufacture
From MPE-3D to SINFONI / VLT

SINFONI / VLT – Eisenhauer et al.
The MUSE / VLT Slicer
Image Slicer - Raw Data

SINFONI - VLT

Wavelength

Slice
IFU Zoo: How to map 3D on 2D

Telescope Focus

Image Slicer

Spectrograph Input

Spectrograph Output

Final Output Data Cube

Lens Array + Fibers

Pure Lens Array

mirrors

fibers

lens image

IFUs ESO 08
To first order: all 3D methods are equivalent

⇒ same number of Detector pixels = same Data volume
But it is **NOT** equivalent

- Efficiency of packing on the CCD $\Rightarrow Q_{\text{max}}$
- Noise issues
- Separation of spectral versus spatial information:
 - better handle on spectrophotometry
 - But low packing efficiency
- **Slice = spatial continuity**
 - Continuous variation
 - High packing efficiency
 - But the 2 spatial dimensions are not on a similar ground
Best technique?

- lenslets
- fibres
- slicers
- microslicers

→ Slicers but difficult to make
From Sky to Datacubes

We wish to retrieve the full 3D information from an observed astrophysical object

❖ Issues

❖ Atmosphere
 - Transparency, PSF, refraction, time variations

❖ Optical path (telescope/instrument)
 - distortions, achromatism, diffraction, …

❖ Splitting the field, sampling issues

❖ CCD signatures
 - dark current, bias, artefacts, non linearity, irregularities, CTE

❖ An Inverse problem with knowns and unknowns:
 - HOW to recover the best signal out of a given exposure
 - HOW to robustly estimate the quality of the data
How to un-map 2D to 3D?

- Standard = to ‘extract’ 2D data into 3D (x,y,λ) ‘data-cube’
- Cubes are then resampled to linearize the 3D
- Initial extraction ➔ extra resampling step
- Very difficult to retain the original sampling during extraction
- Assumption of smoothly-varying properties across a CCD?
How is the 3D data mapped?
How is the 3D data mapped?

- Example: SAURON mask
 - Flexures ➔ reference exposure
 - Critical blends
 - Sampling of the spectral PSF
- Detailed optical model:

 To know where each x, y, λ lie on the CCD!!
Within a slice, CCD pixels are neighbouring in \((x,y,\lambda)\) - no de-blending

- Slices are independent
- No common wavelength axis

- Spatial axes can be arranged arbitrarily
- Fibres may need de-blending
- Wavelength axis is common to all fibres
- Fibres usually treated as independent

- Both spatial and spectral axes re-arranged
- CCD pixels fully decoupled from \((x,y,\lambda)\)
- Deblending is critical
- Each lens is independent
The Noise issue

- Noise from the instrument
 - Detector noise
 - Read-out noise, shot noise from the dark current
 - Noise introduced during the data processing
 - E.g., due to the finite S/N of calibration exposures

- Noise from the undesired backgrounds
 - Shot noise from the backgrounds will remain even after a perfect subtraction of the undesired background

- Shot noise from the signal itself

- S/N of a dataset = key element for the analysis

How real/robust are features you will detect / use?
Propagation of artefacts

Artefact has been:
- spread out - more data loss
- attenuated - less likely to be identified
Cosmic Rays

- CCD coordinates are decoupled from data-cube coordinates
- Cosmics have high contrast in image planes
- Real features follow smooth/PSF distribution
- But better to do before resampling
Common data reduction steps

- Linearity correction
- Dark current subtraction
- Detector flat
- Bias subtraction
- Extraction
- Spatial calibration/tracing
- IFU flat
- Flux correction
- Wavelength calibration
- Instrumental background removal
- Atmospheric dispersion correction
- Sky subtraction
- Telluric correction
- Binning
- Dithering/mosaicing
- Bad pixel identification/removal
- Spatial calibration/tracing
- Bias subtraction
- Dark current subtraction
- Detector flat
- Extraction
- Spatial calibration/tracing
- IFU flat
- Flux correction
- Wavelength calibration
- Instrumental background removal
- Atmospheric dispersion correction
- Sky subtraction
- Telluric correction
- Binning
- Dithering/mosaicing
- Bad pixel identification/removal
The all-in one (magic!) solution?

- **Minimise** the number of steps including a resampling
- **Associate data analysis tools with data reduction software**

 The “ultimate” solution: to keep working with the detector pixels

 → real nightmare (and a 3D one!)

 “less” true for densely-packed fiber systems and image slicers?

© P. Ferruit
IFU Issues: Atmospheric Refraction

- Atmospheric refraction = image shifts as function of wavelength
- Shifts largest at blue wavelengths
- Can be corrected during reduction by shifting back each λ plane

© R. McDermid
Fringing from bad flat fielding

OASIS
McDermid et al. 2006
Variations in spectral PSF across field
Need to homogenize before merging
Measured using twilight sky
Co-Adding Data Cubes

Two approaches:

1. Dithering by non-integer number of spaxels:
 - Allows over-sampling, via ‘drizzling’
 - Resampling introduces correlated noise
 - Good for fairly bright sources

2. Dithers by integer number of spaxels
 - Allows direct ‘shift and add’ approach
 - No resampling: better error characterisation
 - Assumes accurate (sub-pixel) offsetting
 - Suitable for ‘deep-field’ applications
IFU Issues: Spatial Binning

Unbinned S/N map

S/N map After binning

Voronoi tessellation

Target S/N

Cappellari & Copin 2003
IFU evolution

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Type</th>
<th>N Spat</th>
<th>N Spec</th>
<th>Domain μm</th>
<th>Spaxel arcsecond</th>
<th>R</th>
<th>AO</th>
<th>Year</th>
<th>Telescope</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIGER</td>
<td>Lens</td>
<td>572</td>
<td>270</td>
<td>0.45 – 1</td>
<td>0.4</td>
<td>1200</td>
<td></td>
<td>1987</td>
<td>CFHT - 3.6m</td>
</tr>
<tr>
<td>ARGUS</td>
<td>Fibres</td>
<td>622</td>
<td>2048</td>
<td>0.3 – 1</td>
<td>0.4</td>
<td>450 – 2500</td>
<td></td>
<td>1997</td>
<td>WHT - 4.2m</td>
</tr>
<tr>
<td>MPE-3D</td>
<td>Slicer</td>
<td>256</td>
<td>256</td>
<td>1.48 – 2.41</td>
<td>0.3 – 0.5</td>
<td>1100, 2100</td>
<td>AO</td>
<td>1997</td>
<td>C. Alto - 3.5m / AAT - 3.9m</td>
</tr>
<tr>
<td>INTEGRAL</td>
<td>Fibres</td>
<td></td>
<td></td>
<td>0.45 – 1</td>
<td>0.45 – 2.7</td>
<td>450 – 2200</td>
<td></td>
<td>1997</td>
<td>WHT - 4.2m</td>
</tr>
<tr>
<td>SMIRFS</td>
<td>Lens</td>
<td>72</td>
<td>256</td>
<td>1 – 2.5</td>
<td>0.63</td>
<td>300-6000</td>
<td></td>
<td>1997</td>
<td>UKIRT</td>
</tr>
<tr>
<td>OASIS</td>
<td>Lens</td>
<td>1200</td>
<td>360</td>
<td>0.45 – 1</td>
<td>0.04 – 0.4</td>
<td>1000 – 2500</td>
<td>PUEO</td>
<td>1998</td>
<td>CFHT - 3.6m</td>
</tr>
<tr>
<td>MPFS</td>
<td>Lens+Fibers</td>
<td>256</td>
<td>1024</td>
<td>0.45 – 1</td>
<td>0.5 – 1</td>
<td>500 – 2000</td>
<td></td>
<td>1998</td>
<td>Zelenchuk - 6m</td>
</tr>
<tr>
<td>PIFS</td>
<td>Slicer</td>
<td>120</td>
<td>256</td>
<td>1 – 5</td>
<td>0.67</td>
<td>600_1300</td>
<td></td>
<td>1998</td>
<td>Palomar - 5m</td>
</tr>
<tr>
<td>SAURON</td>
<td>Lens</td>
<td>1520</td>
<td>500</td>
<td>0.48 – 0.54</td>
<td>0.27 – 0.94</td>
<td>1600</td>
<td></td>
<td>1999</td>
<td>WHT - 4.2m</td>
</tr>
<tr>
<td>Spiral B</td>
<td>Lens</td>
<td>512</td>
<td>500</td>
<td>0.48 – 1</td>
<td>0.7</td>
<td>1150 – 11000</td>
<td></td>
<td>2000</td>
<td>AAT - 3.9m</td>
</tr>
<tr>
<td>TEIFU</td>
<td>Lens</td>
<td>1000</td>
<td>1024</td>
<td>0.40 – 1</td>
<td>0.13 – 0.25</td>
<td>2000</td>
<td></td>
<td>2000</td>
<td>NAOMI</td>
</tr>
<tr>
<td>Kyoto 3D</td>
<td>Lens</td>
<td>1000</td>
<td>500</td>
<td>0.36 – 0.9</td>
<td>0.42</td>
<td>1200</td>
<td></td>
<td>2000</td>
<td>Nogayama - 2m</td>
</tr>
<tr>
<td>Kyoto 3D</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0.093</td>
<td>3500</td>
<td></td>
<td>2002</td>
<td>Subaru - 8m</td>
</tr>
<tr>
<td>VIMOS</td>
<td>Lens+Fibers</td>
<td>6400</td>
<td>2046</td>
<td>0.27 – 1</td>
<td>0.33 – 0.67</td>
<td>180 – 2520</td>
<td></td>
<td>2001</td>
<td>VLT - 8.2m</td>
</tr>
<tr>
<td>FLAMES</td>
<td>Lens+Fibers</td>
<td>308</td>
<td>2048</td>
<td>0.37 – 0.95</td>
<td>0.3 – 0.52</td>
<td>7500_25000</td>
<td></td>
<td>2001</td>
<td>VLT - 8.2m</td>
</tr>
<tr>
<td>CIRPASS</td>
<td>Fibres</td>
<td>490</td>
<td>1024</td>
<td>0.85 – 1.8</td>
<td>0.05 – 0.35</td>
<td>3000</td>
<td></td>
<td>2001</td>
<td>Gemini N – 8m</td>
</tr>
<tr>
<td>UIST</td>
<td>Slicer</td>
<td>72</td>
<td>1024</td>
<td>1 – 5</td>
<td>0.24</td>
<td>300-6000</td>
<td></td>
<td>2001</td>
<td>UKIRT</td>
</tr>
<tr>
<td>GMOS</td>
<td>Lens+Fibers</td>
<td>1500</td>
<td>2048</td>
<td>0.36 – 1.1</td>
<td>0.2</td>
<td>670 – 4400</td>
<td></td>
<td>2001</td>
<td>Gemini N/S - 8.2m</td>
</tr>
<tr>
<td>IMACS</td>
<td>Lens+Fibers</td>
<td>1000</td>
<td>1024</td>
<td>0.4 – 0.9</td>
<td>0.2</td>
<td>1800 – 10000</td>
<td></td>
<td>2001</td>
<td>Magellan - 6.5m</td>
</tr>
<tr>
<td>PMASS</td>
<td>Lens+Fibers</td>
<td>256</td>
<td>2048</td>
<td>0.35 – 0.9</td>
<td>0.5 – 1</td>
<td>500 – 3000</td>
<td></td>
<td>2002</td>
<td>Calar Alto - 3.5m</td>
</tr>
<tr>
<td>OASIS</td>
<td>Lens</td>
<td>1200</td>
<td>360</td>
<td>0.43 – 1</td>
<td>0.09 – 0.42</td>
<td>1100 – 2400</td>
<td>NAOMI</td>
<td>2002</td>
<td>WHT - 4.2m</td>
</tr>
<tr>
<td>PPAK</td>
<td>Lens+Fibers</td>
<td>316</td>
<td>2048</td>
<td>0.35 – 0.9</td>
<td>2.7</td>
<td>500 – 3000</td>
<td></td>
<td>2002</td>
<td>Calar Alto - 3.5m</td>
</tr>
<tr>
<td>SINFONI</td>
<td>Slicer</td>
<td>1024</td>
<td>2048</td>
<td>1 – 2.5</td>
<td>0.025 – 0.25</td>
<td>2000-4500</td>
<td>AO</td>
<td>2002</td>
<td>VLT - 8.2m</td>
</tr>
<tr>
<td>GNIRS</td>
<td>Slicer</td>
<td>1500</td>
<td>1024</td>
<td>1 – 5.5</td>
<td>0.04 – 0.15</td>
<td>6000</td>
<td></td>
<td>2003</td>
<td>Gemini S - 8.2m</td>
</tr>
<tr>
<td>SNIFS</td>
<td>Lens</td>
<td>225</td>
<td>2048</td>
<td>0.32 – 1</td>
<td>0.6</td>
<td>1500</td>
<td></td>
<td>2004</td>
<td>UH - 2.2m</td>
</tr>
<tr>
<td>NIFS</td>
<td>Lens</td>
<td>1000</td>
<td>1024</td>
<td>0.95 – 2.42</td>
<td>0.1</td>
<td>5000</td>
<td></td>
<td>2005</td>
<td>Gemini N - 8m</td>
</tr>
<tr>
<td>OSIRIS</td>
<td>Lens</td>
<td>1000 – 2500</td>
<td>4096</td>
<td>1 – 2.5</td>
<td>0.02 – 0.1</td>
<td>3800</td>
<td>AO</td>
<td>2008</td>
<td>Keck - 10m</td>
</tr>
<tr>
<td>VIRUS</td>
<td>Lens+Fibers</td>
<td>247x132</td>
<td>4000</td>
<td>1 – 2.5</td>
<td>0.34 – 0.57</td>
<td>1</td>
<td>1000</td>
<td></td>
<td>2010</td>
</tr>
<tr>
<td>KMOS</td>
<td>Slicer</td>
<td>24x196</td>
<td>2000</td>
<td>1 – 2.5</td>
<td>0.2</td>
<td>3500</td>
<td></td>
<td>2010</td>
<td>VLT - 8.2m</td>
</tr>
<tr>
<td>MUSE</td>
<td>Slicer</td>
<td></td>
<td></td>
<td>0.45 – 0.9</td>
<td>0.05 – 0.2</td>
<td>3000</td>
<td></td>
<td>2013</td>
<td>VLT - 8.2m</td>
</tr>
</tbody>
</table>

IFUs
IFU papers

© R. Bacon
IFU (biased) evolution

<table>
<thead>
<tr>
<th>Name</th>
<th>Year</th>
<th>N spatial</th>
<th>N spectral</th>
<th>N total</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIGER</td>
<td>1987</td>
<td>572</td>
<td>270</td>
<td>154,440</td>
</tr>
<tr>
<td>OASIS</td>
<td>1997</td>
<td>1,200</td>
<td>360</td>
<td>432,000</td>
</tr>
<tr>
<td>SAURON</td>
<td>1999</td>
<td>1,577</td>
<td>540</td>
<td>851,580</td>
</tr>
<tr>
<td>VIMOS</td>
<td>2002</td>
<td>6,400</td>
<td>550</td>
<td>3,520,000</td>
</tr>
<tr>
<td>MUSE</td>
<td>2008</td>
<td>90,000</td>
<td>4,096</td>
<td>368,640,000</td>
</tr>
</tbody>
</table>
Data reduction and analysis challenges

Data complexity:
- Optimal extraction ➔ Good data model
- 2D mapping of 3D data
- Data characteristics: noise and systematics

Lack of robust tools:
- Each instrument has different characteristics
- Observing strategy can condition the data reduction
- Lack of manpower
- Community ?
 - Success !: Euro3D
 - Failure : Euro3D
Data reduction and analysis challenges

- **Data volume, for example MUSE:**
 - One exposure is > 1Gb (360 million resolved elements)
 - One night = a few 100 Gb of raw data
 - One 3D deep field will take 10 nights (> 1 Tb…)

- **Such instruments and applications require:**
 - A parallel data-reduction pipeline
 - Control the systematic to reach the required limiting magnitude
 - Optimal summation of 100 data cubes obtained under different sky conditions
 - Mining the final data cube to search for Lyα emission