Gas kinematics in the nucleus of the nearby galaxy M83

A Multi-Wavelength 3D Perspective of a single galaxy

Andreas Lundgren
Atacama Pathfinder EXperiment, ESO, Chile
Talk at the workshop “Gas and Stars in Galaxies - A Multi-Wavelength 3D Perspective” in Garching on June 10th 2008
Introduction: Overview

• Observations
 • SEST CO(2-1) and WHT H\(\alpha \) with GH\(\alpha \)FaS

• Published results
 • “Spiral Inflow Feeding the Nuclear Starburst in M83, Observed in H\(\alpha \) Emission with the GH\(\alpha \)FaS Fabry-Perot Interferometer”, Fathi et al. 2008, ApJ, 675L,17F

• CO(2-1) and H\(\alpha \) spectra in the nucleus of M83 - a direct comparison
Introduction: Questions
Introduction: Questions

- How much gas is transferred to the nucleus?
- How does the kinematics of this gas look?
- What effect does it have on the star formation?
- How is the gas affected by the transfer?
- Location of the resonances?
Observations - Target

- **M83 (NGC5236)**
 - R.A. 13 37 01, Dec -29 51 56 (J2000)
 - Barred spiral galaxy
- Low inclination
- Fairly symmetrical
- Rich in blue young stars
 - 6 SN in during this century
- No nearby companions
- Distance 4.5 Mpc
 - 1” = 22pc
Observations - Target

- M83 (NGC5236)
 - R.A. 13 37 01, Dec -29 51 56 (J2000)
 - Barred spiral galaxy
- Low inclination
- Fairly symmetrical
- Rich in blue young stars
 - 6 SN in during this century
- No nearby companions
- Distance 4.5 Mpc
 - 1” = 22pc
Observations - Target

- **M83 (NGC5236)**
 - R.A. 13 37 01, Dec -29 51 56 (J2000)
 - Barred spiral galaxy

- Low inclination

- Fairly symmetrical

- Rich in blue young stars
 - 6 SN in during this century

- No nearby companions

- Distance 4.5 Mpc
 - 1" = 22pc
Observations - Radio

- **APEX CO(J=4-3) data**
 - Receiver not commissioned

- **SEST - Complete coverage of the optical disk**

- **CO(J=1-0)**
 - Spectra in 1900 positions, 11” spacing, 45” spatial resolution, 1.8 km/s velocity resolution
 - Deconvolved, using a MEM-method, to 23” spatial resolution, 5 km/s velocity resolution

- **CO(J=2-1)**
 - 2574 positions, 7”+11” spacing, 23” spatial resolution, 0.9 km/s velocity resolution
 - Deconvolved to 13” spatial resolution, 5 km/s velocity resolution
 - Data corrected for the error beam
Observations - Radio

- APEX CO(J=4-3) data
 - Receiver not commissioned

- SEST - Complete coverage of the optical disk
 - CO(J=1-0)
 - Spectra in 1900 positions, 11” spacing, 45” spatial resolution, 1.8 km/s velocity resolution
 - Deconvolved, using a MEM-method, to 23” spatial resolution, 5 km/s velocity resolution
 - CO(J=2-1)
 - 2574 positions, 7”+11” spacing, 23” spatial resolution, 0.9 km/s velocity resolution
 - Deconvolved to 13” spatial resolution, 5 km/s velocity resolution
 - Data corrected for the error beam
Observations - Hα

- GHαFaS Fabry-Perot interferometer
 - Nasmyth focus of the 4.2m William Herschel Telescope (WHT), Tenerife, Spain
 - FOV 3.4’x3.4’, pixel size 0.4”
 - Channel width 8.2 km/s, 48 channels, spectral range 392 km/s
Observations - $H\alpha$

- GHαFaS Fabry-Perot interferometer
- Nasmyth focus of the 4.2m William Herschel Telescope (WHT), Tenerife, Spain
- FOV 3.4′x3.4′, pixel size 0.4″
- Channel width 8.2 km/s, 48 channels, spectral range 392 km/s
Results CO: iso-velocity curves

Iso-velocity curves CO(1-0)
Contour increment 10 km s$^{-1}$
Pattern of rotating disk
Deviations - streaming motions

To obtain the rotation curve, the kinematic data has to be compensated for inclination, position angle, systemic velocity and kinematic-center offset.
Results CO: the model

- Residuals range from -20 km/s to +20 km/s
- The pattern seems to be spiral shaped, and seen in CO(1-0, 2-1) and HI data
Results CO: the model

- Residuals range from -20 km/s to +20 km/s
- The pattern seems to be spiral shaped, and seen in CO(1-0, 2-1) and HI data
Results CO: the model

- Residuals range from -20 km/s to +20 km/s
- The pattern seems to be spiral shaped, and seen in CO(1-0, 2-1) and HI data
Results CO: rotation curve
Results CO: rotation curve

<table>
<thead>
<tr>
<th>CO(J=1-0)</th>
<th>CO(J=2-1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>Error (1σ)</td>
</tr>
<tr>
<td>Kinematic center</td>
<td>IR-center</td>
</tr>
<tr>
<td>Pos. ang.</td>
<td>46°</td>
</tr>
<tr>
<td>inclination</td>
<td>24°</td>
</tr>
<tr>
<td>Systemic vel. (LSR) [km s(^{-1})]</td>
<td>511.8</td>
</tr>
<tr>
<td>Disk Mass ([10^9 \text{ M}_\odot])</td>
<td>59</td>
</tr>
<tr>
<td>Disk scale length [kpc]</td>
<td>2.7</td>
</tr>
</tbody>
</table>
Results CO: rotation curve

\(M_{\text{gas}} (6.8 \times 10^9 \, M_\odot) \)
responsible for 11% of the dynamical mass

<table>
<thead>
<tr>
<th>CO(J=1-0)</th>
<th>CO(J=2-1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>Error (1(\sigma))</td>
</tr>
<tr>
<td>Kinematic center</td>
<td>IR-center</td>
</tr>
<tr>
<td>Pos. ang.</td>
<td>46°</td>
</tr>
<tr>
<td>inclination</td>
<td>24°</td>
</tr>
<tr>
<td>Systemic vel. (LSR) [km s(^{-1})]</td>
<td>511.8</td>
</tr>
<tr>
<td>Disk Mass ([10^9 , M_\odot])</td>
<td>59</td>
</tr>
<tr>
<td>Disk scale length [kpc]</td>
<td>2.7</td>
</tr>
</tbody>
</table>
Results CO: rotation curve

M_{gas} (6.8 x 109 M$_\odot$) responsible for 11% of the dynamical mass.

Scale length of the kinematic fit similar to that of the CO distribution fit (2.3 kpc).

<table>
<thead>
<tr>
<th>CO(J=1-0)</th>
<th>CO(J=2-1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>Value</td>
</tr>
<tr>
<td>Kinematic center</td>
<td>IR-center</td>
</tr>
<tr>
<td>Pos. ang.</td>
<td>46°</td>
</tr>
<tr>
<td>inclination</td>
<td>24°</td>
</tr>
<tr>
<td>Systemic vel. (LSR) [km s$^{-1}$]</td>
<td>511.8</td>
</tr>
<tr>
<td>Disk Mass [10^9 M$_\odot$]</td>
<td>59</td>
</tr>
<tr>
<td>Disk scale length [kpc]</td>
<td>2.7</td>
</tr>
</tbody>
</table>
Results CO: angular velocity

Corotation

\[\Omega = \Omega_p \]

Resonances

\[nm(\Omega - \Omega_p) = \pm \kappa \]

- m - number of arms
- n - integer number
- n=2 for Lindblad resonance
- n=4 for Ultraharmonic resonance

Our CO data has been used to calculate the pattern speed with the Tremaine-Weinberg method.

\[50 \pm 9 \text{ km s}^{-1} \text{ kpc}^{-1} \]

Results CO: angular velocity

Corotation

\[\Omega = \Omega_p \]

Resonances

\[nm(\Omega - \Omega_p) = \pm \kappa \]

- m - number of arms
- n - integer number
 - n=2 for Lindblad resonance
 - n=4 for Ultraharmonic resonance

Our CO data has been used to calculate the pattern speed with the Tremaine-Weinberg method:

50±9 km s\(^{-1}\) kpc\(^{-1}\)

Results CO: angular velocity

Corotation

\[\Omega = \Omega_p \]

Resonances

\[nm(\Omega - \Omega_p) = \pm \kappa \]

- \(m \) - number of arms
- \(n \) - integer number
 - \(n=2 \) for Lindblad resonance
 - \(n=4 \) for Ultraharmonic resonance

Our CO data has been used to calculate the pattern speed with the Tremaine-Weinberg method: \(50 \pm 9 \text{ km s}^{-1} \text{ kpc}^{-1} \)

Results CO: angular velocity

Corotation

$$\Omega = \Omega_p$$

Resonances

$$nm(\Omega - \Omega_p) = \pm \kappa$$

m - number of arms
n - integer number
n=2 for Lindblad resonance
n=4 for Ultraharmonic resonance

Our CO data has been used to calculate the pattern speed with the Tremaine-Weinberg method 50 ± 9 km s$^{-1}$ kpc$^{-1}$

Results CO: angular velocity

Corotation

\[\Omega = \Omega_p \]

Resonances

\[nm(\Omega - \Omega_p) = \pm \kappa \]

- \(m \) - number of arms
- \(n \) - integer number
- \(n=2 \) for Lindblad resonance
- \(n=4 \) for Ultraharmonic resonance

Our CO data has been used to calculate the pattern speed with the Tremaine-Weinberg method

\[50 \pm 9 \text{ km s}^{-1} \text{ kpc}^{-1} \]

Results CO: angular velocity

Corotation

$$\Omega = \Omega_p$$

Resonances

$$nm(\Omega - \Omega_p) = \pm \kappa$$

m - number of arms
n - integer number
n=2 for Lindblad resonance
n=4 for Ultraharmonic resonance

Our CO data has been used to calculate the pattern speed with the Tremaine-Weinberg method 50 ± 9 km s$^{-1}$ kpc$^{-1}$

Results CO: angular velocity

Corotation
\[\Omega = \Omega_p \]

Resonances
\[nm(\Omega - \Omega_p) = \pm \kappa \]

m - number of arms
n - integer number
n=2 for Lindblad resonance
n=4 for Ultraharmonic resonance

Our CO data has been used to calculate the pattern speed with the Tremaine-Weinberg method \[50\pm9 \text{ km s}^{-1} \text{ kpc}^{-1} \]

Results CO: angular velocity

Corotation
\[\Omega = \Omega_p \]

Resonances
\[n m (\Omega - \Omega_p) = \pm \kappa \]

Our CO data has been used to calculate the pattern speed with the Tremaine-Weinberg method 50±9 km s^{-1} kpc^{-1} (Zimmer et al. ApJ 607 2004)

m - number of arms
n - integer number
n=2 for Lindblad resonance
n=4 for Ultraharmonic resonance
Results CO: angular velocity

Corotation

\[\Omega = \Omega_p \]

Resonances

\[nm(\Omega - \Omega_p) = \pm \kappa \]

- \(m \) - number of arms
- \(n \) - integer number
 - \(n=2 \) for Lindblad resonance
 - \(n=4 \) for Ultraharmonic resonance

Our CO data has been used to calculate the pattern speed with the Tremaine-Weinberg method

\[50 \pm 9 \text{ km s}^{-1} \text{ kpc}^{-1} \]

Results CO: angular velocity

Corotation

$$\Omega = \Omega_p$$

Resonances

$$nm(\Omega - \Omega_p) = \pm \kappa$$

m - number of arms
n - integer number
n=2 for Lindblad resonance
n=4 for Ultraharmonic resonance

Our CO data has been used to calculate the pattern speed with the Tremaine-Weinberg method

$$50 \pm 9 \text{ km s}^{-1} \text{ kpc}^{-1}$$

Our CO data has been used to calculate the pattern speed with the Tremaine-Weinberg method $50\pm9 \text{ km s}^{-1} \text{ kpc}^{-1}$ (Zimmer et al. ApJ 607 2004)

Corotation

\[\Omega = \Omega_p \]

Resonances

\[nm(\Omega - \Omega_p) = \pm \kappa \]

m - number of arms
n - integer number
n=2 for Lindblad resonance
n=4 for Ultraharmonic resonance

Nuclear disk:
- Mass: $3\times10^8 M_\odot$
- Scale length 50pc
Results CO: Disk stability

A gaseous disk becomes unstable against axisymmetric perturbations when the mass surface density exceeds a critical value (Toomre ApJ 1964):

\[\Sigma_{cr} = \alpha \frac{\sigma_{gas} \kappa}{\pi G} \]

Where the epicyclic frequency is given by

\[\kappa^2 = \left(R \frac{d \Omega^2}{d R} + 4 \Omega^2 \right) \left[\text{km s}^{-1} \text{kpc}^{-1} \right]^2 \]

Under gravitational instability mass concentrations will appear along the spiral arms (Elmegreen ApJ 1994). The separations between these agglomerations are:

\[\lambda = 2.2 \left(\frac{\sigma_{gas}}{7 \text{ km s}^{-1}} \right)^2 \left(\frac{\Sigma_{gas}}{20 \text{ M}_\odot \text{ pc}^{-2}} \right)^{-1} \left[\text{kpc} \right] \]
Results CO: Disk stability

A gaseous disk becomes unstable against axisymmetric perturbations when the mass surface density exceeds a critical value (Toomre ApJ 1964):

$$\Sigma_{cr} = \alpha \frac{\sigma_{\text{gas}} \kappa}{\pi G}$$

Where the epicyclic frequency is given by

$$\kappa^2 = \left(R \frac{d\Omega^2}{dR} + 4\Omega^2 \right) \left[\text{km s}^{-1} \text{kpc}^{-1} \right]^2$$

Under gravitational instability mass concentrations will appear along the spiral arms (Elmegreen ApJ 1994). The separations between these agglomerations are:

$$\lambda = 2.2 \left(\frac{\sigma_{\text{gas}}}{7 \text{ km s}^{-1}} \right)^2 \left(\frac{\Sigma_{\text{gas}}}{20 \text{ M}_\odot \text{ pc}^{-2}} \right)^{-1} \text{[kpc]}$$
Distance between the Galactic Molecular Associations (GMAs) can be used to independently derive the velocity dispersion of the interstellar gas

$$\lambda = 2.2 \left(\frac{\sigma_{\text{gas}}}{7 \text{ km s}^{-1}} \right)^2 \left(\frac{\Sigma_{\text{gas}}}{20 \text{ M}_\odot \text{ pc}^{-2}} \right)^{-1} [\text{kpc}]$$
Distance between the Galactic Molecular Associations (GMAs) can be used to independently derive the velocity dispersion of the interstellar gas

$$\lambda = 2.2 \left(\frac{\sigma_{\text{gas}}}{7 \text{ km s}^{-1}} \right)^2 \left(\frac{\Sigma_{\text{gas}}}{20 \text{ M}_\odot \text{ pc}^{-2}} \right)^{-1} \text{[kpc]}$$

Results CO: Disk stability
Results CO: Disk stability

\[\sigma_{\text{gas}} = 7.8 \pm 0.9 \text{km s}^{-1} \]

Distance between the Galactic Molecular Associations (GMAs) can be used to independently derive the velocity dispersion of the interstellar gas

\[\lambda = 2.2 \left(\frac{\sigma_{\text{gas}}}{7 \text{ km s}^{-1}} \right)^2 \left(\frac{\Sigma_{\text{gas}}}{20 \, M_{\odot} \, \text{pc}^{-2}} \right)^{-1} \text{[kpc]} \]

The derived velocity dispersion is consistent with the ones observed in H2 and HI

Fig. 10. Velocity dispersion in the CO\((J=1-0)\) and CO\((J=2-1)\) data sets, at a common spatial resolution of 49\(^9\), as a function of the galactocentric distance.
The ratio of the mass surface density of the gas divided by the critical critical value:

$$\Upsilon = \frac{\Sigma_{\text{gas}}}{\Sigma_{\text{cr}}}$$

$$\Sigma_{\text{cr}} = \alpha \frac{\sigma_{\text{gas}} \kappa}{\pi G}$$

$$\Sigma_{\text{gas}} = \Sigma_{\text{H}_2} + \Sigma_{\text{HI}} + \Sigma_{\text{He}}$$
Results CO: Disk stability

The ratio of the mass surface density of the gas divided by the critical critical value:

$$\Upsilon = \frac{\Sigma_{\text{gas}}}{\Sigma_{\text{cr}}}$$

$$\Sigma_{\text{cr}} = \alpha \frac{\sigma_{\text{gas}} \kappa}{\pi G}$$

$$\Sigma_{\text{gas}} = \Sigma_{\text{H}_2} + \Sigma_{\text{HI}} + \Sigma_{\text{He}}$$

Correlates with the location of the HII regions in M83
Results Hα: The model

- We derive kinematical properties that are consistent with the ones seen in the CO data
Removing the 2D velocity field from the data reveals a spiral residual pattern superimposed on the rapidly rotating inner component.

Harmonic decomposition gives a v_{rad} of the order of 50 km/s.

Results Hα: Kinematics

- Hα Nuclear disk:
 - Mass: $5.5\pm0.9 \times 10^8 \, M_\odot$
 - Scale length: 60±20 pc

- CO Nuclear disk:
 - Mass: $3\times10^8 \, M_\odot$
 - Scale length: 50pc

- Dust ring seen in J-K
Results Hα: Kinematics

Hα Nuclear disk:
- Mass: $5.5 \pm 0.9 \times 10^8$ M$_\odot$
- Scale length 60±20 pc

CO Nuclear disk:
- Mass: 3×10^8 M$_\odot$
- Scale length 50pc

Elmegreen et al., AJ, 116, 1998
Results Hα: Kinematics

Hα Nuclear disk:
- Mass: 5.5±0.9 x 10⁸ M☉
- Scale length 60±20 pc

CO Nuclear disk:
- Mass: 3x10⁸ M☉
- Scale length 50pc

Elmegreen et al., AJ, 116, 1998
Comparison: Maps
Comparison: Maps
Comparison: Maps
Comparison: Maps
Comparison: Spectra
Comparison: Spectra
Comparison: Spectra
Summary

- In the barred galaxy M83 we have been able to kinematically follow the gas falling in from 10 kpc to within 300 lightyears from the nucleus.

- The GHαFaS data give the first high-resolution view over 2 kpc radius of M83 and unveiled the inner disk with a mass corresponding to 5% of the total ISM mass of the galaxy, and 0.5% of the total dynamical mass.

- The infalling gas is driven by the bar and is responsible for forming the disk, as well as feeding the circumnuclear starburst in this galaxy.