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How did the galaxies in the local Universe form and evolve?

Galaxy formation is a complex
process:
- cold diffuse gas inside dark
matter halo
- gas heated by gravitational S s, S
collapse _F
- cooling via X-ray emission
- condensing of gas info stars
forming a disk which is supported
by angular momentum
- feedback by stellar winds and
supernova
- merging of galaxies to build up
halo and stellar mass

— — — Model 5.1: €,,.,,=0.03
Model 56.2: €, ..,=0.13




- Redshift surveys have shown
that galaxy formation was
much more efficient at high-z

- Most of todays "normal”
galaxies were being assembled
at z=1-5

Epoch of galaxy formation

Lookback Time (Gyr)
10




What we need is a way to spatially resolve

distant galaxies.

..then we could figure out the dynamics, distribution
of SF, scale, energy and mass involved in outflows

Key Questions:

But, the sizes and flux scales involved make it incredibly difficult to

spatially resolve the dynamics and SF properties of star-forming galaxies at
high-z.
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v University Identifying high-redshift galaxy populations

- Significant population Q1700+64186 Field, £ < 26.5
of "normal” galaxies at |

z~3 identified are LBGs.

- Actively SF, low dust,
dynamical/stellar masses
and chemical properties
expected for local
spirals/spheroidals
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Identifying high-redshift galaxy populations

- Actively SF, low
dust, dynamical/
stellar masses,
chemical
properties and
space densities
expected for local
spirals/spheroidals

- Responsible for
~30-40% of the
cosmic SF history
between z=2-3

e.g. Shapley et al. 2003,
2006, Erb et al. 2004
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Detailed Studies of high-z galaxies 01623-BX663 - FWHM

SSA22-MD41

.

(2346-BX482

01623-BX528

Forster-Schreiber et al. (2006) studied 14 LBGs with
SINFONTI and found rotation on ~4kpc scales in 3
galaxies and velocity shears in 9/14
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Very Detailed Studies

Most studies have mapped the demographics of the population as a whole. What is
needed is detailed studies of indivual galaxies
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Genzel et al. 2006 studied unusually large object at z=3 on ~1kpc (0.1") scales and
found evidence for rotfation.
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Observing Galaxies in the Distant Universe

The Problem:
- HIT regions have charachteristic sizes of ~50pc
- distant galaxies are faint!
- dispersed light loses contrast (sky noise, flat field errors),
read-noise, dark current (in near-IR)
- distant galaxies are small
(AO correction is not magic!)




“Galaxies Under the Cosmic Microscope”
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Near-IR Diffraction limits
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Original image Galaxy Cluster




Extremely Detailed Studies: example of
detailed study of lensed L* LBG at z=3
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SFR ~ 100 M,yr!

Masses: 1x10'°M, (dynamics)
7x10°M, (stellar)
5x108M, (gas)

Timescale = Gas mass/SFR = 40Myr!
%COO(SJ_P)in, Swinbank, Neri, Cox, Smail et al.

Wavelength [um]



“Cosmic Eye’ - Preview of ALMA science

z~3.07 LGB pair lensed by
L*k z=0.73 galaxy + z=0.33 cluster
Cluster provides ~30% boost & induces
non-concentricity of arcs
Magnification = x 28 + 3
Sources 1.5 kpc apart ( < 1kpc in size)

Intrinsic properties:
Lk=22.6 + 0.2 (AB), M¢=-22.2+/-0.2 (~L«*)
SFR ~ 100 Moyr!
Masses: 1x10°M, (dynamics)
7x10°M, (stellar)
5x10%M, (gas)
Timescale = Gas mass/SFR = 40Myr!




HST/ACS images

planel)

Datacube Projection

HST V-band + OSIRIS [Olll]/K—-band

Arcseconds

Keck/OSIRIS LGS (Sept 2007). LGS
delivers 0.075" resolution (100pc in source

see also Nesvadba et al. 2007







velocity field o-map

LN
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velocity (km/s)

Each pixel in 100pc and independant: Mayn~6x10°M, (R<1.8kpc)
Resolution is 10mas in non-lensed case!  Zsrr=4.4M./yr/kpc?
v/o=1 (thick disk)

Stark, Swinbank, Ellis et al 2008 Nature




Synergies with other facilities: eg. ALMA

Predicted location of CO

’ Predicted FWHM of CO

Constraints on & at high-z:
M(Hz2) = a L'co

Since gas mass MUST to
be less than dynamical
mass suggests 0<0.8 (see

also Tacconi et al. 2008)




University Push to higher-z:
of Durham .
Quick example: RCS0224-002 z.=0.78

z=4.88 arc

Arc Seconds

|=25.2 (source
plane) ... an L*
galaxy at z=5

-5 -10
Arc Seconds




~University The VIMOS IFU movie

- of Durham




Arc Seconds

University
of Durham

5 82

5 10
Arc Seconds Arc Seconds
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Arc Seconds
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Arc Seconds
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University
of Durham

SINFONTI IFU observations map the OIT emission at 2.2um
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University
of Durham

SINFONTI IFU observations map the OIT emission at 2.2um
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v University Reconstructed images of the z=4.88 arc

of Durham

Reconstructed image (HST VI-band)
Amplification = 16 (Am = 3.0 mags)

_SFR = 12+/-2"Mo/yr

Oll] emission line intensity [ON] emission line velocity

| Source~Frome Lya emission line map
L L

-5 0
kpc




University PUTTlng The OII, LYOC C(nd UV‘ISM

of Durham

diaghostics together

Stars (Oll)
SFR~ 1 2Mo/yr
Mdyn"’ I X l O IOMQ

UV ISM lines

>
-400 +500  velocity

Based on Tenorio-Tagle et al
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g University Implications from RCS0224-002 z=4.88arc

» Highly magnified galaxy
> magnification factor ~16

> Source-frame morphology only
~3Kkpc in size

» 200 pc resolution with HST

» OIT has small velocity shear (line widths
estimate M ~ few x10°Mo)

> ~6x smaller than median LBG mass (4] Energy from SNe ~5 x 10°” erg
at z=3 [¥] Outflow will reach several ~1Mpc
» SFR~12+/-2 Mo/yr (comoving) before it stalls.
> thats small for a z=5 galaxy!

> Lya redshifted, UV ISM lines
blueshifted

» starburst driven wind
> Emission-line morphology

> bi-conical outflow with extent >>10
kpc.

4] Energetics:




University
of Durham

Key Advantages of lensing studies:
- Galaxies are much bigger AND brighter
than the non-lensed case
- For a flux gain of factor ~30x, gain in spatial size is
factor ~6x
- Begin to resolve the largest HII regions in galaxies at
z=1-5
Key disadvantages:
- Need a good lens model (requires at least 3
spectroscopically confirmed multiple images (expensive)
- Even with lens model, there are still uncertainties in
the lens plane reconstruction due to degeneracies
- Not that many targets are suitable (highly magnified,
correct redshift, etc)




University
of Durham

» IFU are a powerful probe of physics in high-z galaxies.

» In particular, the relation between star-formation and gas dynamics critical for
understanding role of feedback

»Coupled with Gravitational Lensing makes TFU studies very appealing:

> Provides complementary view of high-z star-forming galaxies at lower spatial
resolution (although limited number of galaxies currently available)

»Provided valuable early glimpse of ELT and ALMA science
»Future Prospects:

> More concerted efforts at finding z>2 lensed sources

> Resolved dynamics (especially with LGS AO)




