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Proliferation of IFS at many observatories
(big and small)

SINFONI, FLAMES, VIMOS (ESO-VLT); GNIRS,
NIFS (Gemini); OSIRIS (Keck); SAURON, OASIS
(WHT) ..... to name but a few!

Bigger and better — larger fields of view, more
spaxels, higher throughput.

More versatile — deployable IFS (warm now,
cryogenic soon)

Special purpose — high contrast planet finding
applications

Other wavelengths — mid-IR (JWST-MIRI), far-IR
(Herschel-PACS)

uture IFS instrumentation, 3D2008, 13th June 2008
Th



Slicing the Image
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Principle of the Image Slicer
(used in SINFONI, GNIRS, NIFS)
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The Advanced -

Image Slicer

« Advanced image
slicer (Content 1998)
uses power on
slicing and pupil
mirrors to reduce slit
length.

« Additional field
optics required to
place exit pupil at
correct location
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The MUSE image slicer
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courtesy MUSE project (Bacon, Laurent, et al.)

Future IFS instrumentation, 3D2008, 13th June 2008 6
Niranjan Thatte



Image Slicer with de-magnification

from pre-optics slicer entrance pupil
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The TIGRE concept
(also SAURON, OASIS, OSIRIS)
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The BIGRE concept

» Second set of lenslets to create dispersed focal planes rather than
pupil planes. Necessary to avoid diffraction effects

Focal plane lst Micro Micro pupil Znd Micra  Micro image
lens array array lens arr*ag array
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KMOS (VLT)
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What iIs KMOS ?

« KMOS is a multiple-object cryogenic integral field
spectrograph designed for intermediate resolution
spectroscopy in the 0.8-2.5um range

« 24 robotic pickoff arms patrol a 7.2 arcmin diameter field
each of which feeds 2.8x2.8 arcsec FoV sampled at 0.2
arcsec to an image slicing IFU

« The IFUs are consolidated in groups of 8 which feed
one of 3 identical spectrographs providing R~3500
spectra in the IZ, J, H & K bands
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Top Level Scientific Drivers (KMOS)

* Investigate the physical processes which drive galaxy
formation and evolution over redshift range 1<z<10.

« Map the variations in star formation histories, spatially
resolved star-formation properties, and merger rates

« QObtain dynamical masses of well-defined samples of
galaxies across a wide range of environments at a
series of progressively earlier epochs
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KMQOS Science Cases

« How did galaxies form ?

« How did galaxies grow ?

« What are their masses as function of time ?

« How did galaxies acquire their angular mom. ?
 How does metallicity grow with time ?

 What is the role of mergers ?

« What is the role of AGN/feedback

« What is the role of environment ?
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Systems Architecture
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Prototype Pickoff Arm
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Integral field units

Slit mirrors
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Status and Schedule

* Phase B start July 2004

* Preliminary Design Review May 2006
* Final Design Review Sep 2007

* Prelim Acceptance Europe Sep 2010
* Prelim Acceptance Chile Mar 2011
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MUSE (VLT)
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Nasmyth B UT4

Deformable Secondary
Mirror

1170 actuators

Laser guide stars

4 x 5-10 Watts

Instrument

Integral Field Spectrograph

Number of IFU units

24

Detectors

4k x 4k Deep depletion CCD

Simultaneous
Wavelength Range

480 - 930 nm (hominal)
465 - 930 nm (extended)

Resolving Power

1750@465nm - 3750@930nm

Datacube Size

1570 MB
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Field of View 1x1 arcmin?
Spatial Sampling 0.2x0.2 arcsec?
: Spectra/Exposure 90,000

Sky Coverage in AO | 70% @ galactice pole
99% @ galactic equator

* | AO Energy gainwrt | x2
seeing
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S Narro' Field A&ode-

Field of View 7.5x7.5 arcsec?

Spatial Sampling 25x25 milliarcsec?

-

Spectra/Exposure |90,000

| Spatial resolution  |5-10% Strehl Ratio @ 650nm
10%-20% Strehl Ratio @ 850nm

v
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IRIS (TMT)
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IRIS team

UCLA

(lenslet spectrograph
and system)

John Cranfield
Glenn Fox
James Larkin (Pl)
El RV EEEE

Alex Vaucher
NERIRIERS

CALTECH UCSC Subaru
(Slicer spectrograph, (ADC and (Imager)
IRIS WFS) Spectrograph
optics)
Anna Moore (co-Pl) Brian Ba_urnan Tomonori Usuda
Rich Dekany Drew Phillips Masahiro Konishi
ME Ryuji Suzuki

HIA

(IRIS WES, interface)

David Loop
Joeleff Fitzsimmons
Murray Fletcher

| Iames Stilburn

IRIS Science
Team

TBA (next week!)
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IRIS Requirements

« Spectrograph
— Wavelength Range 0.8-2.5 microns
— Spectral Resolution > 3500
— Bandwidth: Complete bands at one time ~20%
— |FS with Four Plate Scales

« 0.004, 0.010, 0.025, 0.050 arcsec per sample

« FOV > 64x64 spatial samples
— 0.25"x0.25” to 3.2"x3.2"

— >8,000,000 spatial/spectral pixels

* Imager
— >15 arcsec field of view
— 0.004 arcsec plate scale
— Wavefront Error < 30 nm
— Distortion correctable to 50 microarcsec.
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Lenslet and Slicer
Spectrograph

» Lenslet spectrograph offers excellent
iImage quality (low wfe)
—0.004" and 0.009” scales

 Slicer offers 2x larger field of view and
higher SNR
—0.025" and 0.050" scales

' courtesy Anna Moore (Caltech)




Lenslet design from IRIS feasibility study

Grating

Lenslet
Array

courtesy Anna Moore (Caltech)
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Slicer design from IRIS feasibility study

courtesy Anna Moore (Caltech)
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IRIS Status

« Completed Feasibility study March 2006
* Now starting Conceptual study.
« Concept design review May 2009

« Goal is to deliver to HIA for integration
with AO system in 2013.

* On sky 2016.
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HARMONI (E-ELT)
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HARMONI: A single field, wide
band, integral-field spectrograph
for the E-EL

HARMONI is a proposed optical-NIR, adaptive optics
assisted, integral field spectrograph designed to exploit the
early-light capabilities of the European ELT

Phase A study: March ‘08 — Dec '09
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Single-Field Wide-Band Spectrograph (SFWBS)

Primary mode
- Integral Field
- Medium Spectral Resolution
- NIR
- GLAO & LTAO/MCAO

Optional modes
- Visible-red wave bands
- High Spectral Resolution
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SPIFFI/SINFONI

NIR: 1.0-2.5um ﬁi’
= 2000 spectra

C
R = 2000 - 4000
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Baseline Instrument Specifications

Field of view

5-10", likely 2:1 format; ~100x200 spaxels

Spatial pixel scales

At least 3: 50 mas, 4 mas, 15 mas(TBD)

Wavelength range

0.8-2.4um, visible extension

Spectral resolution

R > 4000, 20000(?)

Simultaneous
wavelength coverage

2K-4K spectra possible
At least single band at medium/high res; goal:
entire spectral range at once

IFU technology

Image slicer? (best fill factor on detector)

Throughput

>35% average, incl. detector Q.E. (similar to
SINFONI)

AO performance

GLAO: 3-5x gain in EE in 50 mas spaxel (abs.
value 3.7% at K with GLAO!)

LTAO: K-60%, J-20%, NGS-19"" mag.

MCAO: K-50%(uniform), NGS-19t/20%
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The E-ELT focal stations

*Small rotating
removable mirror
*GLAO WFS
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EAGLE (E-ELT)
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EAGLE Science Requirements

High spatial resolution (~ 75 milliarcsec):
— Requires AO

Extended sources (~2x2 arcsec):
— For galaxies, clustered stellar objects etc
— Integral Field Units needed

Source counts for statistics:
— Multi-object instrument (20+)

Efficiency:
— Wide-field (5 arcmin) to ensure all channels are used

Spectral coverage:
— From Calcium Triplet, through to K band

Spectral resolution:
— R~4,000 (to resolve OH lines, one atmos. band in ~2000 pix)
— R~10,000 for precise velocities/abundances of stellar pops.
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Multi-Object Adaptive Optics

Laser Guide Star Multi-Object AO
Wavefront sensor in pseudo-closed loop

"

Laser Guide
Stars \

High
Altitude
Layer

Ground
Layer

Narrow field
mode DM

WFS ,fj | O
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#® Science target IFU+DM
WFS-DM control loop
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EAGLE Science Requirements

Parameter Requirement
Patrol Field 5 arcmin diameter
Science subfield (IFU FOV) > 1.5 arcsec
Multiplex 20 to 60

Spatial Resolution

30% EE in 75mas (H-band)

Spectral resolution

4,000 & 10,000

Wavelength range

0.8-2.5 pm
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EAGLE Phase A Study

French/UK instrument 50%/50% split

— French PI: Jean-Gabriel Cuby (Marseille)

— UK co-PIl: Simon Morris (Durham)

— Project Scientist: Matt Lehnert (Paris)

— Instrument Scientist: Chris Evans (UK ATC)

2 year study, formally started Sept. 2007

Phase 1 review with ESO in July

Funding:
— UK: STFC ELT funding

— STFC PPRP bid (ELT R&D in “medium-high” priority from STFC
programmatic review)

— France: CNRS & other channels
— Additional funding via EU-FP7
— ESO
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EAGLE Target Acquisition System

POM solution

eter

output to IFU+spectro
or NGS WFS._

42 DMs +

6 plane mirrors
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Mechanical Support and Packaging

entrance window
TAS enclosure

e 5)
42 unit spectrometers e "',,__@ : e e
and 6 NGS WFSs LA (%)
services distribution ring Al | ‘

Re electronics
core containing enclosures
support structure(s) |
cryogenic and
chilled fluid
supply systems

I cable
4600mm high wrap
4400mm diameter instrument
rotator
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Summary

In the next decade, IFS observations well become the main mode of
observing at large and small telescopes, at many different
wavelengths, on the ground and in space.

AO (LTAO, MCAO, MOAO) and large telescopes will provide a D*
advantage, thus dramatically improving the sensitivity of these new
instruments.

These instruments are increasingly complex, require ~200 person-
years of effort, cost >10M€, and weigh ~10 tons.

The funding for none of these is automatic, if You think that these
super-IFS are critical to achieving Your science goals, You need to
actively lobby to get these instruments built.

There will be a fantastic amount of software required to reduce and
analyse these data properly, we really need to make a concerted
effort to make sure all the tools we need are ready in time.
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