THE GROWTH OF THE RED-SEQUENCE IN CLUSTERS SINCE z=1

ROBERTO MUÑOZ
UNIVERSIDAD DE VALPARAÍSO

Luis Felipe Barrientos
Michael Gladders
Benjamin Koester
David Gilbank
Howard Yee

Universidad Católica de Chile
University of Chicago
University of Chicago
University of Waterloo
University of Toronto

Support from
Scientific objectives

• Determine the age of the Universe at which cluster galaxies acquired most of their stellar content through bursts of star formation.

• Determine when the red-sequence in clusters was first established and how do cluster galaxies populate the red-sequence.
PART I

Introduction
Galaxy formation

• The central Mpc of clusters is dominated by early-type galaxies (ETGs).

• Two main views for the formation of giant ETGs:
 1) A protogalactic monolithic collapse with dissipational star formation.
 2) A product of mergers in a hierarchical scenario of structure formation.

• Clusters contain a large number of galaxies.
Red-sequence

- ETGs form a well defined sequence in the color-magnitude diagram (CMD), which is known as the Red-Sequence (RS)

- de Lucia et al. (2007) studied the RS for a sample of 18 clusters at 0.4<z<0.8, and they found a deficit of faint RS galaxies (M_v>-20.0)

- Gilbank et al. (2008) went one step beyond and used a sample of 500 clusters at 0.35<z<0.95

\[L/F \text{ ratio} = \frac{N_{\text{luminous}}}{N_{\text{faint}}} \]
Andreon (2008) studied a sample of 28 clusters. Most of his $z>0.5$ clusters were selected from the MACS survey.

He concluded that the abundance of faint RS galaxies is constant over $0<z<1.3$.

Increasing trend ?

- Andreon (2008) studied a sample of 28 clusters. Most of his $z>0.5$ clusters were selected from the MACS survey.

- He concluded that the abundance of faint RS galaxies is constant over $0<z<1.3$.

![Graph showing trend](image)
PART II

Data
Cluster sample

- 21 cluster candidates with $z_{\text{phot}} \sim 1$ were selected from the Red-sequence Cluster Survey catalogs (RCS-1; Gladders & Yee, 2005)

- We chose only those clusters which showed an overdensity in the redshift space at $z_{\text{spec}} \sim 1$ and had optical richness $B_{g\text{c}R} > 300$.

- The cluster sample used in this thesis work consists of 15 clusters located between redshifts 0.85 and 1.10.
VLT and HST data

• The observations were carried out at the ESO Very Large Telescope (VLT) with ISAAC, and at the Hubble Space Telescope (HST) with ACS.

• We have deep J_s and K_s-band imaging of 15 clusters, and $F775W$ (i_{775}) and $F850LP$-band (z_{850}) imaging for 5 of these clusters.

Roberto Muñoz
Galaxy clusters in the early Universe
viernes 13 de noviembre de 2009
PART III

Formation epoch of cluster galaxies
K$_s$-band LF

- We built the K$_s$-band LF for the combined cluster sample at $z=1$ through the application of the B+Z method (Muñoz et al 2009).

- It can be described by a Schechter function with $K_s^* = 18.82 \pm 0.25$ and $\alpha = -0.42 \pm 0.28$. By fixing $\alpha = -0.9$ we obtained $K_s^* = 18.39 \pm 0.10$.

[Graph of K$_s$-band LF]

Roberto Muñoz
Galaxy clusters in the early Universe
Evolution of K_s^*

- We adopted the passive evolution models by Kodama & Arimoto (1997) in order to reproduce the observed evolution of K_s^* as function of z.

- We concluded that bright cluster galaxies formed most of their stellar content at $z_f=3.5$.

Roberto Muñoz
Galaxy clusters in the early Universe

viernes 13 de noviembre de 2009
PART IV

Growth of the red-sequence in clusters since z=1
CMR of early-type

- The ACS morphological catalogs of 5 RCS-I clusters were kindly provided by Benjamin Koester.
- The classification was performed with MORPHEUS software (Abraham et al., 2007), and we could distinguish between bulge and disk-type galaxies.
• We defined a regular grid in the observed color-magnitude space at $z=1$ of bin size 0.5 mag in K_{TOTAL} and 0.18 mag in $J-K_{\text{COLOR}}$.

Background subtracted CMD

2-D grid on the CMD used to compute the background-subtracted CMD.

CMD for the combined cluster sample at $z=1$. Best-fit relation was subtracted.
In order to study how cluster galaxies populate the RS, we computed the ratio between the number of bright and faint RS galaxies, hereafter L/F ratio.

\[
L/F \text{ ratio} = \frac{N_{\text{luminous}}}{N_{\text{faint}}}
\]

De Lucia et al. (2007)

- Luminous: \(M_V \leq -20.0 \)
- Faint: \(-20.0 < M_V \leq -18.2\)

Gilbank et al. (2008)

- Luminous: \(-22.7 < M_V \leq -20.7\)
- Faint: \(-20.7 < M_V \leq -19.7\)
Evolution of the L/F ratio of RS galaxies since z=1 for the magnitude limits defined by De Lucia et al. (2007).

Evolution of the L/F ratio of RS galaxies since z=1 for the magnitude limits defined by Gilbank et al. (2008).
REDGROWTH model

• We developed a toy-model for the color evolution of cluster galaxies since $z=1$. This model predicts the change in the number of RS galaxies as function of redshift.

• REDGROWTH consists of a set of model galaxy SEDs computed using the population synthesis code by Bruzual and Charlot (2003) for two SF histories: a single burst SF at $z_f=3$ and an exponentially declining SF of e-folding timescale $\tau=1$, 2, and 7 Gyr.
REDGROWTH results

Predicted evolution of the L/F ratio of RS galaxies since $z=1$, following the magnitude limits defined by De Lucia et al. (2007).

Roberto Muñoz
Galaxy clusters in the early Universe
Conclusions

• That bright cluster galaxies formed most of their stellar content at $z_f=3.5$.

• That progenitors of present-day $M_V>-20$ RS galaxies have undergone a recent burst of star formation at $z=1$.

• That the SF histories of $M_V>-20$ depends strongly on galaxy luminosity: $19.5<K_s<20.2$ have a delay time of 1.5 Gyr, while $20.9<K_s<21.5$ have a delay time of 2.9 Gyr.