A New Window of Exploration in the Mass Spectrum
Strong Lensing by Galaxy Groups in the SL2S

Marceau Limousin
Strong Lensing Legacy Survey Collaboration (SL2S)
Laboratoire d’Astrophysique de Marseille
Dark Cosmology Centre - Niels Bohr Institute
PLAN

- The Canada France Hawaii Telescope Legacy Survey (CFHTLS)

- The Strong Lensing Legacy Survey (SL2S) – TALK BY RÉMI CABANAC
 - A Big reservoir of Strong Lenses (∼ 100) Covering the Full Mass Spectrum: Galaxies, Cluster and Groups

- Strong Lensing by Galaxy Groups:
 Opening a New Window of Exploration in the Mass Spectrum
 - Probe an Intermediate Mass Regime
 - Global Analysis of a Sample of 13 Strong Lensing Groups (+ 7 new ones)

- Strong Lensing as a Probe of the Mass Distribution Beyond the Einstein Radius
 - The Dark Matter Distribution in SL2S J08544-0121, A Galaxy Group at $z=0.35$
Look for Strong Lenses Automatically:
Arc Finder \textit{(Alard et al., 2007)} \& Ring Finder \textit{(Gavazzi et al.)}
\Rightarrow Strong Lensing Legacy Survey \textit{(SL2S)} \textit{(Cabanac et al., 2007)}
Follow-up: Space Imaging + Spectroscopy (LRIS-Keck - FORS-VLT)

⇒ Confirm Lensing Hypothesis, Better Resolve the Arcs
Sometimes Inconclusive . . . Ongoing Work . . .
Strong Lenses over the Full Mass Spectrum

The Contributions of Different Types of Haloes on the Image Separation Distribution ($\theta \sim 2 \, R_E$) (Oguri et al., 2006)

- Galaxies: $\theta < 3''$
- Clusters: $\theta > 15''$
- Intermediate Mass Range: $(10^{13} < M < 10^{14} \, M_\odot)$
- $3'' < \theta < 15''$
- ⇒ *Group Scale* Dark Matter Haloes

Intermediate Mass Range Lenses Should **Exist** in a ΛCDM Universe? All **Scales** are found in the SL2S
Strong Lensing *IN* and *BY* Galaxy Groups

IN Groups: A Galaxy Scale Lens \(R_E < 2''\) around a Galaxy living *within* a Group

- High Density environment likely to *enhance* the SL cross section
 (Kovner 1987; Oguri et al., 2005; Fassnacht et al., 2006; King 2007)

- Groups Contains Preferentially *Elliptical* Galaxies

\[\Rightarrow \text{Many Strong Lenses in Groups Reported:} \]

- e.g. Kundic et al., 1997; Fassnacht & Lubin, 2002; Morgan et al., 2005; Williams et al., 2006; Momcheva et al., 2006; Auger et al., 2007, 2008; Tu et al., 2008, 2009; Grillo et al., 2008; Faure et al., 2008, Treu et al., 2008 ...

IN Groups: Strong Lensing Generated by a *Galaxy Scale* Dark Matter Halo

Slimming:

- **High Density environment likely to enhance the SL cross section**
- **Groups Contains Preferentially Elliptical Galaxies**
- **Many Strong Lenses in Groups Reported:**
 - e.g. Kundic et al., 1997; Fassnacht & Lubin, 2002; Morgan et al., 2005; Williams et al., 2006; Momcheva et al., 2006; Auger et al., 2007, 2008; Tu et al., 2008, 2009; Grillo et al., 2008; Faure et al., 2008, Treu et al., 2008 ...

Cosmos 5921

(Anguita et al., 2009, A&A)
Strong Lensing IN and BY Galaxy Groups

IN Groups: A Galaxy Scale Lens ($R_E < 2''$) around a Galaxy living within a Group

- High Density environment likely to enhance the SL cross section (Kovner 1987; Oguri et al., 2005; Fassnacht et al., 2006; King 2007)
- Groups Contains Preferentially Elliptical Galaxies
- ⇒ Many Strong Lenses in Groups Reported:
 e.g. Kundic et al., 1997; Fassnacht & Lubin, 2002; Morgan et al., 2005; Williams et al., 2006; Momcheva et al., 2006; Auger et al., 2007, 2008; Tu et al., 2008, 2009; Grillo et al., 2008; Faure et al., 2008, Treu et al., 2008 ...

IN Groups: Strong Lensing Generated by a Galaxy Scale Dark Matter Halo

BY Groups: $3'' < R_E < 8''$ \(\rightarrow M(R_E) \sim 10^{13} M_\odot\)
- ⇒ Group Scale Dark Matter Haloes

SL2S: 13 Strong Lensing Groups (from $z = 0.3$ to $z = 0.8$)
(Limousin, Cabanac, Gavazzi, Kneib, Motta et al., 2009, A&A) (+ 7 new ones)

Cosmos 5921
(Anguita et al., 2009, A&A)

Cosmic Horse Shoe
(Belokourov et al., 2009, A&A)
Non Cusp Groups

Identify Systems? → No Strong Lensing Modelling
Space Based Follow-up: Strong Lensing Analysis
Analysis

HST Imaging \Rightarrow Small Scales Properties: Strong Lensing Modelling \rightarrow R_E

CFHTLS Imaging \Rightarrow Large Scales Properties

WEAK LENSING:
(Talk by Gaël Foëx)

LIGHT:

- (g, r, i) Photometry
- Red Sequence Techniques \rightarrow Group Members
- \Rightarrow Luminosity Contours

HOW IS THE LIGHT DISTRIBUTED?

- Background Galaxies: $21.5 < i < 24 \sim \text{mag}_{\text{COMP}}$
- PSF Subtraction & Shape Parameters: IM2SHAPE (Bridle et al., 2002)
- Mean D_{LS}/D_S \Rightarrow CFHTLS Deep Field Photometric Redshift Catalogue (Roser Pellò, 2008)
- Fit Shear Profile (γ) using SIS $\Rightarrow \sigma_{\text{SIS}}$

HOW MUCH MASS IT CONTAINS?
Results (Limousin et al., 2009, A&A)

- **Einstein Radii**: $2.5'' < R_E < 8''$

- **Weak Lensing**: $(\sigma \sim 500 \text{ km s}^{-1})$

- **Lens (white cross)**: Dominates the Luminosity Distribution (except J08544-0121, see later)

 \Rightarrow **Mass Light Correlated**

- $M/L_i \sim 250$: Comparable
 - Poor Groups $(\sigma \sim 300 \text{ km s}^{-1})$
 - Clusters $(\sigma > 1000 \text{ km s}^{-1})$

 \Rightarrow **Bridges the Gap**
Combining Complementary Probes

Relevant to get a better understanding of the limitations and advantages of each tool

- Spectroscopy of Group Members: FORS 2 on VLT (Poster by Veronica Motta)
 Dynamical Mass, Structures along the Line of Sight

- Near Infra Red Imaging from WIRCAM on CFHT (P.I. G. Soucail)
 Stellar Mass, improved Photometric Redshift

- X-ray (proposal XMM/Chandra)

Investigating some Groups in More Details:

- Inner Density Profile of SL2S J02140-0532 (Talk by Tomás Verdugo)

- SL2S J02176-0513: The Mass Profile of an Early-Type Galaxy in a Group Environment (Talk by Rémi Cabanac)

- SL2S J08544-0121
Strong Lensing as a Probe of the Mass Distribution

Beyond the Einstein Radius

Strong Lensing (SL) is well established to provide accurate mass measurements at the location of the Einstein Radius (location of the arcs)

However, precise modelling can be “bothered” by some External Mass Distribution (e.g. the Group/Cluster within which the Lens is embedded)

(Kochanek & Blandford, 1991; Keeton et al., 1997; Keeton et al., 2000; Kochanek et al., 2001; Oguri et al., 2005)

Example: derive H_0 from SL + time delays: $\Delta(h)/h \sim 0.22$ (Keeton & Zabludoff, 2004)

Turn this “bother” to our advantage ⇒

Use precise SL modelling to Probe the External Mass Distribution:

“Ring Technique”

Simulations & Application on Abell 1689

(Tu, Limousin et al., 2008, MNRAS)

Application on SL2S J08544-0121 (Limousin et al., submitted)
Ring Technique on Abell 1689 (Tu, Limousin et al., 2008 - MNRAS)
Fitting the Images around the Three Galaxies ONLY
(> 100 multiple images in the Cluster Core NOT considered)

• Model: 3 Isothermal Potential (G1, G2, G3)
 + Cluster (One Clump, free position)
 \[\chi^2 > 100 \] – Clump Between Lights Clumps

• Model: 3 Isothermal Potential
 + Two Clumps associated with Each Light Clump
 \[\chi^2 < 4 \]

Rings ONLY: Strong Evidence for Bimodality of the Cluster Core

(Miralda-Escude & Babul, 1995; Broadhurst et al., 2005; Zekser et al., 2006; Halkola et al., 2006;
Limousin et al., 2007; Leonard et al., 2007; Saha et al., 2007; Umetsu et al., 2007)
SL2S J08544-0121 at $z = 0.35$: Modelling the Lens

- **Bright Arc**: $z_{\text{spec}} = 1.268$
 (Johan Richard, LRIS, KECK)

- **Faint Arc**?

- **Strong Lensing Model**:
 An Elliptical Isothermal Potential
 Centred on the Main Galaxy?

- $e = a^2 - b^2 / a^2 + b^2 < 0.6$
 (Jing & Suto, 2001)
SL2S J08544-0121 at $z = 0.35$: Failed Modelling

- **Bright Arc**: $z_{\text{spec}} = 1.268$
 (Johan Richard, LRIS, KECK)

- **Strong Lensing Model**:
 An Elliptical Isothermal Potential
 Centred on the Main Galaxy?

- $e = a^2 - b^2 / a^2 + b^2 < 0.6$
 (Jing & Suto, 2001)

 \Rightarrow **BAD fit**:
 RMS=0.4", $\chi^2_{\text{red}} = 29$, $e > 0.6$

 \Rightarrow Need to Account for **EXTERNAL MASS PERTURBATION**?
Environment

Lens (X) not Found at the Centre of the Light Distribution (Bimodal)

External Mass Perturbation based on the Light Distribution?

⇒ Is Mass Traced by Light?
Introducing an External Mass Perturbation: \((s, M_{\text{EXT}})\)

Group Members [- LENS]: Total Light → Luminosity Map (smoothing, \(s\))

\[
L = 10^7, 10^8 \, \text{L}_\odot \, \text{arcsec}^{-2}
\]

Luminosity Map → Mass Map \((M_{\text{EXT}})\) (Jullo & Kneib, 2009)

→ External Perturbation \((s, M_{\text{EXT}})\)
Remodelling the Lens
Accounting for External Mass Perturbation \((s, M_{\text{EXT}})\)

Good Fits are Found for a Range of \(s\) and \(M_{\text{EXT}}\)
(best fit: \(\text{rms}=0.05'', \chi^2 \sim 1\))

\(s\) and \(M_{\text{EXT}}\) do Characterize the Galaxy Group Properties

From a \textit{Local} (\(\sim 10''\)) Strong Lensing Analysis ...

\Rightarrow \textit{Global} (\(\sim 100''\)) Constraints on the \textit{Group} as a Whole!

\Rightarrow \text{Strong Lensing only is Sensitive to the Mass Distribution on Large Scales}
Constraints on the Group (Strong Lensing Only)

for \((s, M_{TOT})\) [Lens Modelling] \(\rightarrow \Delta(\chi^2)\) \(\rightarrow\) Confidence Levels

\[
M_{TOT} = M_{EXT} + M_{LENS} \left(\sim K_{st} \right) \& L=L_{TOT}
\]

\[s < 40'' \& 52 < \frac{M_{TOT}}{L} < 165 \ (3\sigma)\]

Effect of the Large Scale Perturbation Experienced Locally by the Lens?
External Mass Perturbation [First Order]: κ_{ext} & γ_{ext}

M_{EXT} Fixed ($5.7 \times 10^{14} M_\odot$): $\gamma_{\text{ext}} = 0.1 - \kappa_{\text{ext}} = 0.1, 0.2$

$\gamma_{\text{ext}} = \gamma_{\text{ext}}(s)$ & $\kappa_{\text{ext}} = \kappa_{\text{ext}}(s)$

What does the Lens Feel? [First order]

\Rightarrow Average γ_{ext} & κ_{ext} Around the Lens
\(\kappa_{\text{ext}} \) Experienced by the Lens

\(\kappa \) lines do NOT FOLLOW Degeneracies
γ_{ext} Experienced by the Lens

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure.png}
\end{figure}

γ lines DO FOLLOW Degeneracies:

Multiple Images NEED LOCALLY a Shear Value of ~ 0.075

Degeneracies Understood: large s compensated by larger Mass [FIRST ORDER]

CONTOURS DO CLOSE: HIGHER ORDER TERMS BEYOND SHEAR
Complementary Mass Probes: Weak Lensing

\[\sigma_{\text{SIS}} = 658^{+119}_{-146} \text{ km s}^{-1} \Rightarrow M/L = 106 \pm 40 \ (1\sigma) \]

Good AGREEMENT with the Strong Lensing ONLY Constraints
Complementary Mass Probes: Dynamics (losvdisp)

Group Members Dynamics (FORS 2@VLT)

A Bimodal Structure in Velocity Space as Well
(Light Distribution was Found Bimodal and Motivated the Lensing Scenario Presented)
Complementary Mass Probes: X-Ray ?

X-Ray Counterpart ? (XMM - Chandra)
(P.I. Fabio Gastaldello)

- Check the lensing based scenario
 (in particular the light traces mass Hypothesis)
- Catch an interesting snapshot of the structure formation process
Can Strong Lensing Compete over Weak Lensing?

In SL2S J08544-0121, SL seems to compete over WL!

Cheaper in terms of Telescope Time?
- High Quality Data (CFHTLS + Terapix)
- Deep Enough + good seeing (0.5″)
- Shallow Snapshot HST Imaging
- BUT STILL EXPENSIVE

Easier?
- Model and Subtract the PSF
- Measure Shape Parameters of Faint Objects
- Only Conjugating a Few Images!
- Removal of Faint Group/Cluster Members
- Arc Brightness Distribution (Suyu et al., 2006)

More Accurate?
- WL: $66 < M/L < 146 \ (1\sigma)$
- SL: $52 < M/L < 165 \ (3\sigma)$

Extendable to Higher Redshift?
- WL signal Decreases Quickly with Lens Redshift
- HST Imaging of $z = 1$ Lens Feasible
- SL2S J08544-0121 at $z = 1$: NO WL
Where do Constraints are Coming From?

A Highly Perturbed SL System
\[d(1.1-1.2-1.3) \sim 5'' \]
\[d(1.4) \sim 8'' \]

Removing Image 1.4:

- Lens Modelling (No Ext. Perturb.): Good Fit RMS=0.04'', $\chi^2=0.06$
- Lens Modelling (+ Ext. Perturb.): Equally Good Fit for a Large Range of s, M/L

⇒ No Need for an External Mass Perturbation

Looking for Perturbed Strong Lensing Systems?

A Non Dominant SL System
As a Particule Test Probing the Main Potential
A Non Dominant SL System as a Particule Test Probing the Main Potential
A Non Dominant SL System as a Particule Test Probing the Main Potential

Bimodality! (In its Light Distribution and in Velocity Space)
A Non Dominant SL System as a Particule Test Probing the Main Potential

Cosmic HorsheShoe
(Belokurov et al., 2007; Dye et al., 2008)
Almost Complete Einstein Ring of Radius 5″
from a LRG ($z = 0.44$)
⇒ A Non Perturbed SL System:
Dominates the Group Light Distribution

No External Shear Required by the SL Model
Conclusions

Strong Lensing BY Galaxy Groups

- Intermediate Mass Scale Strong Lenses DO Exist: \(\sim 20 \) in the SL2S
- This Finding Opens a New Window of Exploration in the Mass Spectrum
- From SDSS \(\sim 10 \) groups
- Bridges the Gap Between Galaxies and Clusters
- From SDSS \(\sim 10 \) groups Sample Being Built!

see, e.g. The CAMbridge Sloan Survey Of Wide ARcs in the skY \((\text{CASSOWARY}) \) + FermiLab Team

Strong Lensing Can be Used (sometimes) to Probe Mass Distributions Far Beyond the Einstein Radius
\[\Rightarrow \text{a Non Dominant Strong Lensing System as a Particule Test of the Main Potential} \]

Look For HIGHLY PERTURBED SL Systems:
ARCHIVE – FUTURE = LSST - JDEM . . .
Red: Members Associated to the most massive structure
Blue: Members Associated to the less massive structure (and less extended?)
Shear Ellipticity Degeneracies

Ellipticity-shear degeneracy is quite complicated, and depending on the situation the values can either correlate or anti-correlate. See, e.g., Keeton, Kochaneck, Seljak 1997, in which both examples were shown.

In most situations the ellipticity of the galaxy, rather than external shear, mainly determines the ellipticity of the lens potential. The fact that the lens potential want to be elliptical does not say anything about the external shear.

Misalignment of the position angle is a good indicator of the external shear.
The Canada France Hawaii Telescope Legacy Survey
Follow-up: Space Imaging + Spectroscopy (LRIS-Keck - FORS-VLT)

Strong Lenses over the Full Mass Spectrum
Strong Lensing IN and BY Galaxy Groups

Non Cusp Groups
Space Based Follow-up: Strong Lensing Analysis
Analysis
Results (Limousin et al., 2009, A&A)
Combining Complementary Probes
Strong Lensing as a Probe of the Mass Distribution
Beyond the Einstein Radius

Ring Technique on Abell 1689 (Tu, Limousin et al., 2008 - MNRAS)
SL2S J08544-0121 at z = 0.35: Modelling the Lens
SL2S J08544-0121 at z = 0.35: Failed Modelling
Environment
Introducing an External Mass Perturbation: \((s, M_{\text{EXT}})\)
Remodelling the Lens
Accounting for External Mass Perturbation \((s, M_{\text{EXT}})\)
Constraints on the Group (Strong Lensing Only)
External Mass Perturbation [First Order]: \(\kappa_{\text{ext}} \& \gamma_{\text{ext}}\)
\(\kappa_{\text{ext}}\) Experienced by the Lens
\(\gamma_{\text{ext}}\) Experienced by the Lens
Complementary Mass Probes: Weak Lensing
Complementary Mass Probes: Dynamics (losvdisp)
Complementary Mass Probes: X-Ray?
Can Strong Lensing Compete over Weak Lensing?
Where do Constraints are Coming From?
A Non Dominant SL System as a Particule Test Probing the Main Potential
A Non Dominant SL System as a Particule Test Probing the Main Potential

Conclusions

SL2S J08544-0121

Shear Ellipticity Degeneracies

Table of Contents