Millimeter-Wavelength Signatures of Viscous Transport in Circumstellar Disks

A. Meredith Hughes (CfA),
David Wilner (CfA), Jungyeon Cho (Wisconsin), Dan Marrone (Chicago),
Alex Lazarian (Wisconsin), Sean Andrews (CfA),
Ram Rao (ASIAA), Chunhua Qi (CfA), Michiel Hogerheijde (Leiden)
Circumstellar disks as accretion disks

Important: the mass distribution in a disk changes over time as material is transported by viscosity of unspecified origin.

Theories of disk evolution generally invoke MRI-driven turbulence as source of anomalous viscosity.

Balbus & Hawley (1991), Stone et al. (2000)

What is observable?

- B-field needed to drive MRI
 Aligned dust grains should generate polarized emission

- Turbulence that generates viscosity
 Nonthermal widths of molecular lines
Circumstellar disks as accretion disks

Important: the mass distribution in a disk changes over time as material is transported by viscosity of unspecified origin.

Theories of disk evolution generally invoke MRI-driven turbulence as source of anomalous viscosity.

Balbus & Hawley (1991), Stone et al. (2000)

Why should you care?

Turbulence solves (and creates?) problems in planet formation

- Time evolution of disk structure
- Dust settling
- Dust grain transport
- Chemistry
- Meteoritic mixing
- Planetesimal Migration
Polarization

Feasibility: single-dish observations, models

Tentative (3σ) 3% polarization detection in two disks with JCMT

First realistic models of polarized emission from disks predict 2-3% polarization at mm wavelengths

- Grains aligned by radiative torque
- Chiang & Goldreich disk model
- Toroidal B-field
- Vary grain shape, size dist.

Tamura et al. (1999)

Cho & Lazarian (2007)
Observations

Hughes et al. (2009)
Model Comparison

Observations do not match predictions: what does this tell us?

Identify model inputs that most strongly affect pol %, given Stokes I

1) Grain elongation
2) Alignment efficiency
3) Grain size distribution
4) B-field strength
5) B-field regularity
6) Scattering...

Hughes et al. (2009)
Turbulence

Feasibility: low-res spectra indicate detectable Δv_{turb}

Modeling GM Aur, Dutrey et al. (1998):

We also found that a moderate turbulent velocity is required to best model the CO data.

Modeling DM Tau, LkCa15, and MWC 480, Pietu et al. (2007):

Need better spectral resolution!

5.6. Turbulence in outer disks

We derive intrinsic (local) line widths ranging between 0.12 and 0.29 km s$^{-1}$. When taking into account the thermal component (0.08 to 0.15 km s$^{-1}$), from Eqs. (6) and (7) we derive turbulent widths below 0.15 km s$^{-1}$. These values should be used as upper limits, since the spectral resolution used for the analysis (0.2 km s$^{-1}$) is comparable to the derived line widths. They are nevertheless significantly smaller than the sound speed, $C_s = 0.3$ to 0.5 km s$^{-1}$ in the relevant temperature and radius range. The turbulence is thus largely subsonic. A more precise analysis, using the full spectral resolution and accurate knowledge of the kinetic temperature distribution, is required for a better determination.
Observations

The HiRes correlator mode on the SMA can achieve a spectral resolution of 20-40 m/s, less than the inferred turbulent linewidth of these disks.

HD 163296

Preliminary modeling: turbulent linewidth of ~ 200 m/s, or $\sim 30\%$ of the sound speed

Challenge: disentangle sources of broadening (turbulent, thermal, rotation, τ, ...)

[Graph of spectral data for HD 163296 with spectral lines and residuals shown]
Summary & Future Work

• We have placed the most stringent limits to date on polarized mm-λ emission from two circumstellar disks

Sensitivity → Numbers:
Is pol fraction uniformly low?

Resolution:
(JCMT:SMA :: SMA:ALMA)
Importance of small structure?

High spectral resolution observations can constrain the turbulent linewidth; so far, appears consistent with theoretical expectations

Sensitivity → Lines:
What is vertical distribution of temp/turbulence?

Resolution:
Info about scale height sizes Dead zone vs. outer disk?