Chemical evolution from cores to disks

Ruud Visser
Leiden Observatory

Ewine van Dishoeck, Steve Doty, Kees Dullemond, Jes Jørgensen, Christian Brinch, Michiel Hogerheijde, John Black

November 3, 2009
Main features of this study

- One model from pre-stellar core to circumstellar disk
- Two-dimensional, axisymmetric
- Study chemical evolution
 - Composition of cometary and planetary building blocks
 - Chemistry affects physics: temperature, MRI, ...
 - Diagnostic tool
Motivation

• How do size and mass of disk evolve?
• When is the disk first formed?
• How does matter flow from envelope to disk?
• What fraction of cometary ices is truly pristine?

• Existing models
 ○ treat only the envelope or only the disk, or both in 1D
 ○ often approximate temperature
Analytical star formation model in 2D

- Fast to run, high resolution, easy to change initial conditions
 Cloud mass (M_0), rotation rate (Ω_0), sound speed (c_s), ...
- Density & velocity: inside-out collapse
 Shu (1977), Terebey, Shu & Cassen (1984)
- Dust temperature (important!) from full radiative transfer
 RADMC: Dullemond & Dominik 2004
- Physics compare well with hydrodynamical models
 Yorke & Bodenheimer 1999, Brinch et al. 2008a,b
- Density profiles compare well with observations
 Jørgensen et al. 2009

Visser et al. (2009), Visser & Dullemond (subm.), Visser et al. (in prep.)
From one to two dimensions

- Previous collapse models treated disk as completely flat
- Include vertical structure: accretion occurs further out
- Accretion shock is weak, except in very inner part

Visser & Dullemond (subm.)
Infall trajectories

- Need to solve chemistry dynamically: compute n, T along many trajectories

- Many different trajectories
- Jump in n, T upon entering disk

Visser et al. (2009), Visser et al. (in prep.)
Chemical evolution along one trajectory

A: volatiles evaporate (e.g. CO, N$_2$)

B: intermediates evaporate (e.g. CH$_4$, NO)

C: other ices evaporate (e.g. H$_2$O, NH$_3$, CH$_3$OH)
photodissociation of many species

D: some species reformed
Gas and ice: H_2O

- H_2O remains solid except inner ~ 5 AU
- H_2O in comet-forming zone, depending on parameters:
 - either unprocessed
 - or evaporated and re-frozen

blue: all ice
white: all gas
black: outflow
black curve: disk surface

$M_0 = 1.0 \ M_{\text{sun}}$
$\Omega_0 = 10^{-13} \ \text{s}^{-1}$
$c_s = 0.26 \ \text{km} \ \text{s}^{-1}$

Visser et al. (2009)
Gas and ice: CO

CO desorbs during infall, re-adsorbs in disk below 18 K

Visser et al. (2009)

blue: all ice
white: all gas
black: outflow
black curve: disk surface

$M_0 = 1.0 \, M_{\text{sun}}$
$\Omega_0 = 10^{-13} \, \text{s}^{-1}$
$c_s = 0.26 \, \text{km s}^{-1}$
Chemical zones: CO gas/ice

Red: CO remains adsorbed (pristine!)
Green: CO desorbs and re-adsorbs
Pink: CO desorbs and remains desorbed
Blue: multiple desorption/adsorption

Visser et al. (2009)

\[M_0 = 1.0 \, M_{\text{sun}} \]
\[\Omega_0 = 10^{-13} \, \text{s}^{-1} \]
\[c_s = 0.26 \, \text{km} \, \text{s}^{-1} \]
Conclusions

- First model to go from pre-stellar cores to circumstellar disks in 2D
- Masses and densities compares well with hydro simulations and SMA observations
- Great tool for chemical evolution
- Disk is divided into zones with different chemical histories
 - Outer part pristine, inner part processed
Future work

- Compute line profiles
 - Compare with observations by SMA, JCMT, IRAM 30m, ...
 - Analyse water data from Herschel (WISH key program)
 - Make predictions for ALMA
- Add grain-surface chemistry
 - Formation of complex organics
- Add isotope-selective CO photodissociation
 - New model: Visser, van Dishoeck & Black (2009)