Compared sensitivity of VLT, JWST and ELT for direct exoplanet detection in nearby stellar moving groups

Charles Hanot, Olivier Absil, Jean Surdej, Anthony Boccaletti

JWST & ELTs: an ideal combination, 13-16 April 2010

JWST/ MIRI

- Mid-InfraRed Instrument (5-27µm)
- FQPM Coronagraph. @ 11.4µm
- $\lambda/D \approx 0.36$ "
- FOV \approx 15"

VLT/SPHERE

- Extreme adaptive optics (XAO)
- FQPM Coronagraphs @ 1.6µm
- $\lambda/D \approx 40$ mas
- FOV ≈ 5.5 "

Chauvin et al. 2005

E-ELT/EPICS

- Vis-NIR imager and spectrograph
- Extreme adaptive optics (XAO)
- Coronagraphs (0.95-1.65µm)
- $\lambda/D \approx 8$ mas
- FOV ≈ 0.4 "

Context and goals

MIRI GTO: short program proposal

- Well defined, well focused
- Immediate scientific return

Main goals

- Directly detect the smallest possible planets at 5-50 AU from main sequence M-type stars
- Unveil new population of planets
- Follow-up: constrain theoretical cooling models

Why M stars?

Most abundant stellar type

Planetary systems not well known

• Planet formation/migration similar to Sun-like stars?

Currently a hot topic

- RV and transit surveys starting
- Prospects for super-Earths in habitable zones
 Low luminosity
 - For a given contrast, fainter planets can be imaged

Why young main sequence stars?

"Main sequence"

- Thick disks have disappeared
- Planetary systems mostly formed

"Young"

- Planets are still warm and luminous —> easier
 - Cooling models poorly constrained
- Moving groups and associations

 Nearby (typically 20 50 pc)
 Ages relatively well defined

Evolutionary models

Fortney et al. 2008

Thursday 15 April 2010

Scientific return

Detection at 11.4 µm

- Age known planet temperature and mass from models
- First statistics of low-mass planets
- Follow-up with MIRI
 - I 5.5 µm: model-independent temperature estimation
 - I0.65 µm: search for ammonia

Follow-up with other instruments

 More constraints on theoretical models
 Astrometric follow-up —> dynamical mass determination for close planets (< 5 AU)

I.Age, distance and magnitude

M0V,10pc, 12 Myr, 1h

I.Age, distance and magnitude

2. Coro. profile \Rightarrow contrast

M0V,10pc, 12 Myr, 1h

I.Age, distance and magnitude

2. Coro. profile \Rightarrow contrast

$3. \Rightarrow$ Companion magnitude

I.Age, distance and magnitude

2. Coro. profile \Rightarrow contrast

$3. \Rightarrow$ Companion magnitude

4. Evol. model \Rightarrow mass

Simulations & assumptions

MIRReference subtraction

MIRI

M0V,10pc, 12 Myr, 1h

Simulations & assumptions

MIRIReference subtraction

SPHERE Reference subtraction Ref subtraction + SDI

Simulations & assumptions

MIRI • Reference subtraction SPHERE

Reference subtraction
Ref subtraction + SDI
EPICS
Ref subtraction + SDI + Pol.

Sample and sensitivity for MIRI

					0.2"		0.5″		1.0"		2.0"	
Name	Dist (pc)	Age (Myr)	Sp type	V	a AU	M Mjup	a AU	M Mjup	a AU	M Mjup	a AU	M Mjup
AU Mic	9.9	12	M1Ve	8.8	2	0.50	5	0.30	10	0.16	25	0.10
TWA 8A	21.0	8	M3Ve	12.2	4	0.40	11	0.25	21	0.19	53	0.16
TWA 8B	21.0	8	M5	15.2	4	0.33	11	0.23	21	0.18	53	0.17
WW PsA	23.6	12	M4	12.2	5	0.50	12	0.30	24	0.21	59	0.20
CD-57 1054	26.3	12	M0/1	10.0	5	0.80	13	0.50	26	0.25	66	0.23
V1005 Ori	26.7	12	M0.5V	10.1	5	0.80	13	0.50	27	0.25	67	0.23
TWA 12	32.0	8	M1Ve	12.9	6	0.80	16	0.45	32	0.26	80	0.25
CPD-66 3080B	31.4	12	M3Ve	12.7	6	0.80	16	0.42	31	0.28	79	0.27
TWA 7	38.0	8	M2Ve	11.7	8	0.90	19	0.52	38	0.30	95	0.28
GJ 4020 A	24.0	50	M0	10.2	5	2.00	12	1.10	24	0.60	60	0.50
GJ 9809	24.9	50	M0	10.9	5	2.00	12	1.10	25	0.60	62	0.50
CT Tuc	37.5	30	M0Ve	11.5	7	1.70	19	0.95	37	0.55	94	0.50

MIRI vs SPHERE

Most M stars too faint for SPHERE's AO SPHERE more sensitive <2AU

MIRI vs SPHERE vs EPICS

Most M stars too faint for EPICS's AO too EPICS always more sensitive EPICS FOV \approx MIRI IWA

MIRI vs SPHERE vs EPICS

0.2"

Thursday 15 April 2010

Conclusions

- MIRI can detect Neptune size planet around M stars
- Ground based telescopes limited by AO sensitivity
- SPHERE more efficient for brighter targets
- EPICS more sensitive but small FOV
- Performances can improve for longer integrations
- What about advanced subtraction methods?

Acknowledgments - To A. Boccaletti for SPHERE and MIRI simulations - To C.Verinaud for EPICS simulations

Backup sides

- Cool planets : Teff = 130K
- H2/H3 contrast important

Sudarsky et al. 2003

Backup sides

Hot planets : Teff = 1000K
H2/H3 contrast low

Sudarsky et al. 2003