Compared sensitivity of VLT, JWST and ELT

for direct exoplanet detection in nearby stellar moving groups

Charles Hanot, Olivier Absil, Jean Surdej, Anthony Boccaletti

JWST \& ELTs: an ideal combination, I3-I6 April 2010

JWST/ MIRI

- Mid-InfraRed Instrument (5-27 $\mu \mathrm{m}$)
- FQPM Coronagraph. @ II.4 mm
- $\lambda / \mathrm{D} \approx 0.36^{\prime \prime}$
$\cdot \mathrm{FOV} \approx 15 "$

VLT/SPHERE

- Extreme adaptive optics (XAO)
- FQPM Coronagraphs @ I.6 $\mu \mathrm{m}$
- $\lambda / D \approx 40$ mas
- $\mathrm{FOV} \approx 5.5$ "

Chauvin et al. 2005

E-ELT/EPICS

- Vis-NIR imager and spectrograph
- Extreme adaptive optics (XAO)
- Coronagraphs (0.95-I.65 m)
- $\lambda / D \approx 8 \mathrm{mas}$
- $\mathrm{FOV} \approx 0.4$ "

Context and goals

MIRI GTO: short program proposal

- Well defined, well focused
- Immediate scientific return

Main goals

- Directly detect the smallest possible planets at 5-50 AU from main sequence M-type stars
- Unveil new population of planets
- Follow-up: constrain theoretical cooling models

Why M stars?

Most abundant stellar type
Planetary systems not well known

- Planet formation/migration similar to Sun-like stars?

Currently a hot topic

- RV and transit surveys starting
- Prospects for super-Earths in habitable zones

Low luminosity

- For a given contrast, fainter planets can be imaged

Why young main sequence stars?

"Main sequence"

- Thick disks have disappeared
- Planetary systems mostly formed
"Young"
- Planets are still warm and luminous \rightarrow easier
- Cooling models poorly constrained
- Moving groups and associations
- Nearby (typically $20-50 \mathrm{pc})$
- Ages relatively well defined

Evolutionary models

Fortney et al. 2008

Time (years)
!!w6 (रढवाट)

Scientific return

Detection at I I. $4 \mu \mathrm{~m}$

- Age known \longrightarrow planet temperature and mass from models
- First statistics of low-mass planets

Follow-up with MIRI

- $15.5 \mu \mathrm{~m}$: model-independent temperature estimation
- $10.65 \mu \mathrm{~m}$: search for ammonia

Follow-up with other instruments

- More constraints on theoretical models

Astrometric follow-up \longrightarrow dynamical mass determination for close planets ($<5 \mathrm{AU}$)

Simulations

Simulations

bet Pic

- n Cha
I.Age, distance and magnitude

Simulations

I.Age, distance and magnitude
2. Coro. profile \Rightarrow contrast

Simulations

Simulations

Simulations $\boldsymbol{\&}$ assumptions

MIRI
MIRI
MOV, IOpc, I2 Myr, Ih

- Reference subtraction

Simulations $\boldsymbol{\&}$ assumptions

MIRI

- Reference subtraction

SPHERE

- Reference subtraction
- Ref subtraction + SDI

Simulations \& assumptions

MIRI
EPICS
MOV, I Opc, 12 MYr, Ih

- Reference subtraction

SPHERE

- Reference subtraction
- Ref subtraction + SDI

EPICS

- Ref subtraction + SDI + Pol.

Sample and sensitivity for MIRI

					0.2"		0.5"		$1.0^{\prime \prime}$		2.0 "	
Name	Dist (pc)	$\begin{gathered} \text { Age } \\ \text { (Myr) } \end{gathered}$	Sp type	V	$\begin{gathered} a \\ A U \end{gathered}$	M Mjup	$\begin{gathered} a \\ A U \end{gathered}$	M Mjup	$\begin{gathered} a \\ A U \end{gathered}$	M Mjup	$\begin{gathered} a \\ A U \end{gathered}$	M Mjup
AU Mic	9.9	12	M1Ve	8.8	2	0.50	5	0.30	10	0.16	25	0.10
TWA 8A	21.0	8	M3Ve	12.2	4	0.40	11	0.25	21	0.19	53	0.16
TWA 8B	21.0	8	M5	15.2	4	0.33	11	0.23	21	0.18	53	0.17
WW PsA	23.6	12	M4	12.2	5	0.50	12	0.30	24	0.21	59	0.20
CD-57 1054	26.3	12	M0/1	10.0	5	0.80	13	0.50	26	0.25	66	0.23
V1005 Ori	26.7	12	M0.5V	10.1	5	0.80	13	0.50	27	0.25	67	0.23
TWA 12	32.0	8	M1Ve	12.9	6	0.80	16	0.45	32	0.26	80	0.25
CPD-66 3080B	31.4	12	M3Ve	12.7	6	0.80	16	0.42	31	0.28	79	0.27
TWA 7	38.0	8	M2Ve	11.7	8	0.90	19	0.52	38	0.30	95	0.28
GJ 4020 A	24.0	50	M0	10.2	5	2.00	12	1.10	24	0.60	60	0.50
GJ 9809	24.9	50	M0	10.9	5	2.00	12	1.10	25	0.60	62	0.50
CT Tuc	37.5	30	MOVe	11.5	7	1.70	19	0.95	37	0.55	94	0.50

MIRI vs SPHERE

Most M stars too faint for SPHERE's AO SPHERE more sensitive <2AU

MIRI vs SPHERE vs EPICS

Most M stars too faint for EPICS's AO too EPICS always more sensitive EPICS FOV \approx MIRI IWA

MIRI vs SPHERE vs EPICS

Conclusions

- MIRI can detect Neptune size planet around M stars
- Ground based telescopes limited by AO sensitivity
- SPHERE more efficient for brighter targets
- EPICS more sensitive but small FOV
- Performances can improve for longer integrations
- What about advanced subtraction methods?

Acknowledgments

- To A. Boccaletti for SPHERE and MIRI simulations
- To C.Verinaud for EPICS simulations

Backup sides

- Cool planets :Teff = I30K
- H2/H3 contrast important

Sudarsky et al. 2003

Backup sides

- Hot planets :Teff = I000K
- H2/H3 contrast low

Sudarsky et al. 2003

