

The Tunable Filter Imager – TFI

David Lafrenière, René Doyon (U. Montréal) & the TFI science team

JWST and the ELTs: An Ideal Combination ESO Garching, April 13, 2010

The Fine Guidance Sensor (FGS) – **Tunable Filter Imager (TFI) module**

- TFI is a science instrument packaged within the FGS module
 - Canadian Space Agency (CSA) contribution to JWST
 - Prime contractor is COM DEV Canada
 - PI of TFI: René Doyon (U Montreal)
 - PI of FGS: John Hutchings (HIA)
- TFI provides narrow band imaging between 1.5 µm and 5.0 µm
 - Based on a Fabry-Perot etalon

- FOV: 2.2'x2.2'
 - 65 mas pixel sampling (Nyquist at 4.0 μm)
 - 2048x2048 pixels (Hawaii 2RG)
- Wavelength range: 1.6-2.6 μm and 3.2-4.9 μm
 - (actually 1.5-2.7 μm and 3.1-5.0 μm)
- Resolving power of ~100 (80-120)
- Sensitivity, 10σ 10x1000 s ———
- Operating modes
 - Normal imaging
 - Lyot coronagraphy
 - 4 occulting spots, 3 lyot masks
 - Non-Redundant Masking interferometry (NRM)

Wavelength μm	Sensitivity nJy	Sensitivity mag
1.5	149	24.8
2.0	139	24.3
2.5	119	24.1
3.5	110	23.5
4.0	136	23.1
4.5	142	22.8

Coronagraphy

- 4 occulting spots engraved on pick-off mirror
 - Diameters of 0.58", 0.75", 1.5" and 2.0"
- 3 lyot masks
 - Transmissions of 71%, 66% and 21%
 - Robust against pupil shear of up to 4%

Coronagraphy constrast limits (3% pupil shear)

These contrasts can be improved further with PSF subtraction

RC CRC A COM DEV

Multi-Wavelength PSF subtraction

- Image of the target itself at a different wavelength is used as a reference PSF image
- Uses sharp spectral feature in companion spectrum
 - Image 1: companion bright
 - Image 2: companion faint

 Demonstrated in the lab using the TFI etalon prototype P0

Université (de Monti Achieved speckle noise attenuation of 10

Non-Redundant Masking interferometry

- Insert a mask containing multiple small apertures at a pupil plane
 - No line joining any two sub-aperture has the same length and PA as another one
- From FT of interferogram, amplitude & phase of interference fringe coming from each pair can be measured "easily"
- Fit a model to measured phases and amplitudes
- Two advantages:
 - Better resolution two sources can be resolved for a separation of 0.5 λ/D

Université de Montréal RC CRC

• Better contrast at small separations - Wave front phase errors have little effect on closure phase

- 7 apertures
 - 5.28 m longest baseline
 - 1.32 m shortest baseline
- Throughput
 - 15%
- Resolution ($\lambda/2B_L$)
 - ≈75 mas at 4.6 µm
- Nominal FOV (λ/2B_S)
 - ≈0.4" at 4.6 µm
- Contrast sensitivity
 - ≈10 mag

The HR 8799 planetary system

- Three 7-10 M_{Jup} planets imaged
- A dusty disk with three components
 - Warm (150 K) dust belt at 6-15 AU – inside planet d
 - Cold (45 K) planetesimal belt just outside planet b
 - A surrounding halo of dust out to ~1000 AU

Su et al. 2009, Reidemeister et al 2009

- Is there a planet inside the inner belt?
 - ~5 AU, separation of 0.13" \rightarrow NRM

Marois et al. 2008

TFI/NRM simulation of "HR 8799 e"

TELESCOPE SPATIAL SPACE TELESCOPE

- Simulation
 - 10 M_{Jup} planet at 5 AU
 - age of 50 Myr assumed
 - 20 min total integration over 9 dithers
 - Includes realistic noise sources

	Input	Measured
Sep (mas)	132	138 ± 15
PA (deg)	50.7	52.7 ± 2.6
Contrast (mag)	8.0	7.87 ± 0.11

RC CNRC A COM DEV

TFI/NRM exoplanet science

- (molten) proto-Earths around nearby young stars (1-100 Myr)
 - Following collisions, planets could stay at >1000 K for several Myr
 - Region of interest <0.5"
 - Contrast of <10 mag for late-type stars

- Long-λ characterization of GPI/SPHERE planets
 - At 4 µm, GPI/SPHERE planets at 0.1"-0.4" and contrasts of 8-10 mag will be accessible only with TFI/NRM
- Planets in star-forming regions (1-5 Myr age)
 - 75-400 mas is 10-60 AU at 150 pc
 - 10 mag contrast sufficient to see gas giants

Exoplanet characterization

1.5

1.0

0.5

0.0

log(Age) = 8.0

- TFI can extract spectral information at R~100, at high contrast, and at any λ
 - For highest contrast planets, TFI could be the only option
- Lots of structure in spectrum at R~100
 - Probe molecular content of atmosphere
 - Constrain Teff & log g
 - Test models
- Follow-up planets found by NIRCam, GPI, SPHERE, etc.

Burrows et al. (2003) models for a 5 M_{Jup} planet binned to R=100

Wavelength (µm)

4.2

FI bandpass

3.6

3.8

4.0

NIRCam bandpasses

4.6

4.8

5.0

4.4

High-Redshift Science with TFI

- * TFI wins by detecting line emission in faint objects.
- Lyman Alpha Emisison can be up to 20x as bright than the continuum for a Lyman Alpha Emitting (LAE) galaxy.
- * Lα is redshifted into the TFI λ range for z~10-30, covering the era from the dark ages to first light where the universe becomes reionized

Its relatively small bandpass yields higher S/N than NIRCam broadband filters, reaching fainter flux sensitivity for line emission

Slides by E. Mentuch, representing the TFI High-z Tiger Team

High-Redshift Science with TFI

- * Predictions of Lyman Alpha emitting galaxies at z=12,15,30 are highly speculative
- * Can make a guess by using the parameters (IMF, metallicity, photon escape fraction) defined by population of LAEs at z=6.5 Kashikawa et al (2006)
- * However, **THIS IS EXPLORATORY SCIENCE**, TFI is the *best* and if the sources of *First Light* are very faint, it may be the *only* option

Slides by E. Mentuch, representing the TFI High-z Tiger Team

- R. Doyon (Pl of TFI, U. Montréal)
- J.Hutchings (PI of FGS, HIA) Here all week
- R. Abraham (UofT)
- L. Ferrarese (HIA)
- R. Jayawardhana (U.ofT)
- D. Johnstone (HIA)
- D. Lafrenière (U. Montréal) Here all week
- M. Meyer (ETH, Zurich) Here Thu-Fri
- J. Pipher (U.Rochester)
- M. Sawicki (St-Mary's)
- A. Sivaramakrishnan (AMNH)

