Simulations of the Common Envelope Interaction using Grid-Based and SPH Codes

Jean-Claude Passy (UVic, AMNH)

March 8, 2011
Collaborators - Acknowledgment

- Orsola De Marco (Macq. University)
- Falk Herwig (UVic)
- Mordecai-Mark Mac-Low (AMNH)
- Chris L. Fryer, Steven Diehl, Gabriel Rockefeller (LANL)
- Greg L. Bryan (Columbia)
- Jefferey S. Oishi (Kavli Institute)
- NSF grant 0607111
1 Motivation

2 Code description
 - The hydrodynamics codes
 - Model

3 The simulations - Results
 - Runs
 - Different \(M_2 \) - Same numerical setup
 - Different numerical setup - \(M_2 = 0.6 \, M_\odot \)

4 Discussion
 - Comparison with observations
 - The role of convection
 - Unbinding the envelope

5 Summary
Direct observations are unlikely → simulations should help

So far, only a few “recent” hydrodynamics simulations exist

- Sandquist et al. 1998
- De Marco et al. 2003
- Ricker & Taam 2008

No comparison between different numerical methods

No comparison with observations
- **Enzo**, a 3D AMR grid-based code (Eulerian)
- **SNSPH**, a 3D Smoothed-Particle Hydrodynamics code using tree gravity (Lagrangian)

<table>
<thead>
<tr>
<th></th>
<th>ENZO</th>
<th>SNSPH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Eulerian</td>
<td>Lagrangian</td>
</tr>
<tr>
<td>Numerical viscosity</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Conservative</td>
<td>≈</td>
<td>Inherent</td>
</tr>
<tr>
<td>Bound. Cs</td>
<td>Large finite grids</td>
<td>Vacuum/None</td>
</tr>
<tr>
<td>Resolution</td>
<td>Adaptive</td>
<td>Mass</td>
</tr>
<tr>
<td>Shocks</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Res. at given N</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>

Jean-Claude Passy (UVic, AMNH)

Simulations of the Common Envelope Interaction using Grid-Based and SPH Codes
Both codes solve the fully compressible hydrodynamics equations with self-gravity included.

In the case of a CE interaction between a giant star (primary) and a MS companion (secondary):

- The radius of the secondary \((\approx 0.5 \, R_{\odot}) \ll R_1\) \(\Rightarrow\) Secondary as a point mass particle
- The primary’s core is also very small \((\approx 0.01 \, R_{\odot})\) and dense \(\Rightarrow\) Primary core also as a point mass particle
1D model of a RGB obtained with EVOL (Herwig 2000): \(M_1 = 0.88 \, M_\odot, \ M_c = 0.392 \, M_\odot, \ R = 83 \, R_\odot \)

Companion masses from 0.9 down to 0.1 \(M_\odot \)

<table>
<thead>
<tr>
<th></th>
<th>(N_{\text{part or } N_{\text{tot}}})</th>
<th>(M_2 (M_\odot))</th>
<th>(A_0 (R_\odot))</th>
<th>(P_0) (days)</th>
<th>(v_0/v_{\text{circ}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPH1</td>
<td>500 000</td>
<td>0.9</td>
<td>83</td>
<td>66</td>
<td>1</td>
</tr>
<tr>
<td>SPH2</td>
<td>500 000</td>
<td>0.6</td>
<td>83</td>
<td>72</td>
<td>1</td>
</tr>
<tr>
<td>SPH3</td>
<td>500 000</td>
<td>0.3</td>
<td>83</td>
<td>81</td>
<td>1</td>
</tr>
<tr>
<td>SPH4</td>
<td>500 000</td>
<td>0.15</td>
<td>83</td>
<td>86</td>
<td>1</td>
</tr>
<tr>
<td>SPH5</td>
<td>500 000</td>
<td>0.1</td>
<td>83</td>
<td>88</td>
<td>1</td>
</tr>
<tr>
<td>Enzo1</td>
<td>128^3</td>
<td>0.9</td>
<td>91</td>
<td>75</td>
<td>1</td>
</tr>
<tr>
<td>Enzo2</td>
<td>128^3</td>
<td>0.6</td>
<td>91</td>
<td>83</td>
<td>1</td>
</tr>
<tr>
<td>Enzo3</td>
<td>128^3</td>
<td>0.3</td>
<td>91</td>
<td>93</td>
<td>1</td>
</tr>
<tr>
<td>Enzo4</td>
<td>128^3</td>
<td>0.15</td>
<td>91</td>
<td>99</td>
<td>1</td>
</tr>
<tr>
<td>Enzo5</td>
<td>128^3</td>
<td>0.1</td>
<td>91</td>
<td>102</td>
<td>1</td>
</tr>
<tr>
<td>Enzo6</td>
<td>256^3</td>
<td>0.9</td>
<td>85</td>
<td>68</td>
<td>1</td>
</tr>
<tr>
<td>Enzo7</td>
<td>256^3</td>
<td>0.6</td>
<td>85</td>
<td>75</td>
<td>1</td>
</tr>
<tr>
<td>Enzo8</td>
<td>256^3</td>
<td>0.3</td>
<td>85</td>
<td>84</td>
<td>1</td>
</tr>
<tr>
<td>Enzo9</td>
<td>256^3</td>
<td>0.15</td>
<td>85</td>
<td>89</td>
<td>1</td>
</tr>
<tr>
<td>Enzo10</td>
<td>256^3</td>
<td>0.1</td>
<td>85</td>
<td>92</td>
<td>1</td>
</tr>
<tr>
<td>Enzo11</td>
<td>128^3</td>
<td>0.6</td>
<td>91</td>
<td>83</td>
<td>1.05</td>
</tr>
<tr>
<td>Enzo12</td>
<td>128^3</td>
<td>0.6</td>
<td>95.55</td>
<td>83</td>
<td>1</td>
</tr>
</tbody>
</table>
Figure: Orbital separation for the 256^3 Enzo simulations.
Motivation

Code description

The simulations - Results

Discussion

Summary

Jean-Claude Passy (UVic, AMNH)

Simulations of the Common Envelope Interaction using Grid-Based and SPH Codes

Runs

Different M_2 - Same numerical setup

Different numerical setup - $M_2 = 0.6 M_\odot$
In De Marco et al. 2011:

- Modification of the α-formalism
- Calculation of the λ parameter using SE tracks
- Deduction the initial configuration of 31 PCE systems
- Derivation a possible anti-correlation of α with q
For $M_2 \geq 0.3 \, M_\odot$, the results converge
For $M_2 < 0.3 \, M_\odot$, the resolution is not sufficient
α are higher than the ones given by De Marco et al. 2011
Final separations larger than almost any know post-CE systems
The adiabatic mass-radius exponent is defined as

$$\xi_{ad} \equiv \left(\frac{\partial \ln M_1}{\partial \ln R_1} \right)_{ad}$$

For a convective star, $$-1/3 \leq \xi_{ad} \leq 0$$
$$\Rightarrow$$ adiabatic mass loss (Hjellming & Taam 1987, Ge et al. 2010)

Convection occurs if $$\nabla_{ad} < \nabla_{rad}$$
80% of the gas is still bound at the end!

- \(a_{\text{rad}} \) is 2 orders of mag. smaller than \(a_{\text{grav}} \)
- Fall back? Circumbinary disk?
- Planet formation? (Geier 2009, Beuermann et al. 2010)
- Envelope eventually unbound? (later phase, recombination...)

Jean-Claude Passy (UVic, AMNH)
17 simulations carried out with Enzo and SNSPH

- Results are very similar for $M_2 \geq 0.6 \, M_\odot$
- For lower masses, Enzo resolution needs to be increased
- Envelope is not unbound and A_f are larger than observations

- Run more simulations with different primaries
- Use Enzo with nested grids/AMR
- Reproduce convection with an ideal gas EOS