AGN Feedback in Nearby Clusters

Andy Fabian
Institute of Astronomy, Cambridge UK

With much help from Jeremy Sanders, Gary Ferland and many others
AGN Feedback in Nearby Clusters

Feedback in the central galaxies of the Perseus and Centaurus
X-ray surface brightness of typical clusters of galaxies
Duty cycle is \sim100\%

See also Birzan+04, Rafferty+06+08, Dunn+F07
Issues

• Total Energy not an issue.
• How does energy get distributed?
• How close is the heating/cooling balance? Feedback too good?
• Observations suggest better than 10% for many Gyr in some objects.
• HOW DOES THE AGN DO THIS?
• Moreover, (how) is coolest X-ray gas (ie $T<5 \times 10^6 K$ with radiative cooling time $\sim 10^7$yr) prevented from cooling?
Optical Fabian+08
Perseus
~3.5PV measured in thick rims (Graham+08)
Power in ripples (sound waves) ~ X-ray luminosity within 70 kpc

Also seen in Centaurus, Virgo...
Buoyant radio lobes in a viscous intracluster medium

Christopher S. Reynolds, Barry McKernan, Andrew C. Fabian, James M. Stone and John C. Vernaleo
NGC1275 with HST Fabian+08
X-ray image of M87 / Virgo
Forman+07
Centaurus
Fabian+05
Cen cluster: Abundance profile implies little diffusion/mixing

Graham+06 (following method of Rebusco+05)
Cool X-ray gas in Centaurus

200 ks Chandra observation

Shows feedback (cavities) and cool gas (~0.7 keV) in CCD spectra

How much gas is there at low X-ray temperatures?
Faraday RM and T map

Taylor+07 B~25uG in 5e6K gas 10% thermal pressure
Inner 60 arcsec width (16 kpc)

Flux (10^{-3} photon cm^{-2} s^{-1} Å^{-1})

Wavelength (Å)

FeXIX, FeXVIII, FeXVII, O VIII, Fe XVII, Fe XVII, Fe XVIII, Fe XVII, O VIII, Fe XVII, Fe XVII, O VIII, Fe XVIII, N VII

strong

missing
Abell 1835

$v_{\text{turb}} < 274 \text{ km/s}$

Sanders+09
Spectral fitting limits on gas kT

$\dot{t}_{\text{cool}} \sim 10^7 \text{ yr}$!
1.2Ms stack of XMM RGS spectra
Sanders+Fabian+10
1.2Ms stack of XMM RGS spectra
Sanders+Fabian+10
Coronal line emission [FeX] from 10^6K gas in Centaurus

Canning + 10

VLT 10.5hr
Canning+11

Vel

FWHM
Perseus SFR~20 Msunpyr Canning+10
Figure 12. Optical structure of the BCG of MACS J1931.8-2634. (a): SuprimeCam BRz image of the central 30 arcsec × 30 arcsec. (b): For this image, the SFR~170 Msunpyr.
Herschel observations of FIR emission lines in brightest cluster galaxies *

L(CII)$\sim5\times10^{42}$ erg/s $\sim6 \times L$(Ha)
Dust

Herschel points

<table>
<thead>
<tr>
<th>Cluster</th>
<th>A1068</th>
<th>A2597</th>
<th>Zw3146</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dust Temperatures</td>
<td>24±4K 57+12 K</td>
<td>21±6K 48+17 K</td>
<td>23±5K 53+22 K</td>
</tr>
<tr>
<td>Cold Dust Mass</td>
<td>5.1×10^8 M_⊙</td>
<td>2.3×10^7 M_⊙</td>
<td>5.4×10^8 M_⊙</td>
</tr>
<tr>
<td>Warm Dust Mass</td>
<td>3.9×10^6 M_⊙</td>
<td>2.9×10^5 M_⊙</td>
<td>1.9×10^6 M_⊙</td>
</tr>
<tr>
<td>Total FIR Luminosity</td>
<td>3.5×10^{11} L_⊙</td>
<td>8.8×10^{9} L_⊙</td>
<td>2.5×10^{11} L_⊙</td>
</tr>
<tr>
<td>Star Formation Rate</td>
<td>60±20 M_⊙ yr^{-1}</td>
<td>2±1 M_⊙ yr^{-1}</td>
<td>44±14 M_⊙ yr^{-1}</td>
</tr>
<tr>
<td>SFR Spitzer</td>
<td>188 M_⊙ yr^{-1}</td>
<td>4 M_⊙ yr^{-1}</td>
<td>70±14 M_⊙ yr^{-1}</td>
</tr>
<tr>
<td>SFR optical/UV</td>
<td>20–70 M_⊙ yr^{-1}</td>
<td>10–15 M_⊙ yr^{-1}</td>
<td>47±5 M_⊙ yr^{-1}</td>
</tr>
<tr>
<td>CO gas mass</td>
<td>4.1×10^{10} M_⊙</td>
<td>2.0×10^{9} M_⊙</td>
<td>7.7×10^{10} M_⊙</td>
</tr>
<tr>
<td>Hα Slit Luminosity</td>
<td>8×10^{41} erg s^{-1}</td>
<td>3×10^{41} erg s^{-1}</td>
<td>3×10^{42} erg s^{-1}</td>
</tr>
</tbody>
</table>

Edge+10
Spectrum of these filaments is unlike anything in Galaxy, other than Crab and due to energetic particles (the hot gas?) Ferland+08/9
10.8hr WHT spectra of Perseus
Nina Hatch

Horseshoe
Almost 10^{11} Msun of cold gas in Perseus
P. Salomé et al.: A very extended molecular web around NGC 1275

Distance [kpc]

Position [kpc]

Velocity [km/s]

FWHM = 130

r1

FWHM = 118

r2

FWHM = 140

r3

FWHM = 117

r4
What heats and ionises the cold gas?

Energetic particles

(not photons)
- Energetic particles produce Ionized gas
 - Heating
- Neutral gas
 - Shower of suprathermal electrons
 - Secondary excitation and ionization
 - less heating

Ferland+08/09
Observed / predicted spectrum

H I, [N I], He I, [O I], [N II], [S II], H$_2$, H$_2$, [Ne II]

Ferland+09
Properties of filaments

• Densities $\sim 10^3 \text{ cm}^{-3}$ or more
• Pressure $nT \sim 10^{6.5} \text{ cm}^{-3} \text{ K}$
• Magnetic Fields $B \sim 70 \text{ uG}$
• Diameter $\sim 70 \text{ pc}$, length many kpc
• Mass usually dominated by molecular gas
• Reconnection diffusion allows

• Hot ICM particles penetrate cold gas, providing secondary ionization

• Rate about right

 (obs flux~0.01 erg cm\(^{-2}\) s\(^{-1}\)~20\% sat. cond. flux)

• Filament mass growing at

 10-100 M\(\odot\) yr\(^{-1}\)
Figure 1. Chandra image of the Northern filament from which the spectrum is measured (right). The long box is 4.1 x 24.3 arcsec (1.5 x 9 kpc). The base of it is about 24.4 kpc from the nucleus of NGC 1275.
In other words

- Innermost hot gas cools radiatively through X-ray emission to \(\sim 10^7 \) K, then plunges to \(< 10^4 \) K by mixing with cold filaments

(cf Fabian+01,02, Soker04)
Summary

• Kinetic mode feedback operates in most massive galaxies, those with hot atmospheres, maintaining stellar mass. Parts of feedback loop observed (bubbles, sound waves, warm, cool and cold gas)

• Inner parts of hot atmosphere cooling radiatively and by mixing into cold gas
Allen+06 Implies Jet Power is 2% Bondi rate
Bondi flow from a rotating hot atmosphere
(Feeding the central black hole with a giant ADAF)
Narayan & Fabian 2011

\[\mathcal{L} \equiv \frac{\ell_{\text{out}}}{\ell_{\text{ms}}} = \frac{\Omega_{\text{out}} r_B^2}{\ell_{\text{ms}}} = 0.136 \Omega_{\text{out}} \left(\frac{c}{c_{\text{out}}} \right)^4 \]
RXCJ1504 Ogrean+10 z=0.2

SFR\sim140 \, M_{\sunpyr}
Photograph of a spherical cap bubble rising in water (from Davenport, Bradshaw, and Richardson 1967).

Figure 5.13 Flow visualizations of spherical-cap bubbles. On the left is a bubble with a laminar wake at Re≈180 (from Wegener and Parlange 1973) and, on the right, a bubble with a turbulent wake at Re≈17000 (from Wegener, Sundell and Parlange 1971, reproduced with permission of the authors).
Bubbling long lived
Ripples in Centaurus Cluster
Sanders+Fabian 08

![Graph showing relative surface brightness vs. radius in kpc and fractional difference vs. radius in arcmin.]

South west
Sanders, Fabian, Smith 10 in prep
The Physics of Cool Cluster Cores

Andy Fabian
Institute of Astronomy, Cambridge, UK
Thermal content of bubbles?

For volume filling factor $>50\% \quad kT>50$ keV
Stability of bubbles

The stability of a large gas bubble rising through liquid†

By G. K. BACHELOR

Department of Applied Mathematics & Theoretical Physics, University of Cambridge,
Silver Street, Cambridge CB3 9EW, UK

The stability of buoyant bubbles in the atmospheres of galaxy clusters

Christian R. Kaiser,1* Georgi Pavlovski,1 Edward C. D. Pope1,2 and Hans Fangohr2

1School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ
2School of Engineering Sciences, University of Southampton, Southampton SO17 1BJ

Dynamics, viscosity and magnetic draping help to stabilise bubbles and make them long-lived
The weak shock