The Coma 3-degree Survey
Stripping and Quenching of Infalling Dwarfs

Russell Smith
Durham University

1) Motivation

2) UV tails & trails: Ongoing stripping of star-forming galaxies

3) Asorption-line spectroscopy: Recent quenching of outer dwarfs

4) Enviro-history of cluster members in models.

You all know it already!
The Coma 3-degree Survey

Associated with the HST/ACS Coma Treasury Survey (Carter et al. 2008), but much wider area, to beyond virial radius of cluster.

* Data:

* Comprehensive spectroscopy from MMT/Hectospec + SDSS:
 - “fast” redshift survey
 - “deep” stellar pops spectra

* Multiwavelength imaging including

 Optical (CFHT), NIR (UKIRT +CFHT), FIR (Herschel), Radio (VLA), Halpha (INT+Subaru),

 UV (GALEX)

3 deg = 5 Mpc @ Coma
The Coma 3-degree Survey

Associated with the HST/ACS Coma Treasury Survey (Carter et al. 2008), but much wider area, to beyond virial radius of cluster.

* Data:

* Comprehensive spectroscopy from MMT/Hectospec + SDSS:
 - “fast” redshift survey
 - “deep” stellar pops spectra

* Multiwavelength imaging including

 Optical (CFHT), NIR (UKIRT +CFHT), FIR (Herschel), Radio (VLA), Halpha (INT+Subaru), UV (GALEX)
The Coma 3-degree Survey

Associated with the HST/ACS Coma Treasury Survey (Carter et al. 2008), but much wider area, to beyond virial radius of cluster.

* Data:
 * Comprehensive spectroscopy from MMT/Hectospec + SDSS:
 - “fast” redshift survey
 - “deep” stellar pops spectra
 * Multiwavelength imaging including
 - Optical (CFHT), NIR (UKIRT +CFHT), FIR (Herschel), Radio (VLA), Halpha (INT+Subaru),
 - UV (GALEX)

3 deg = 5 Mpc @ Coma
Two programmes observed in parallel extending to 2.5 Mpc radius ~ R_{vir}

I. A fast **redshift survey** of ~7,000 galaxies with $r<20.5$ to establish membership, measure LF, GSMF, etc. -> Marzke et al. (in prep).

II. Repeated observations to yield high-S/N spectra of “bright” dwarfs ($r\sim17$) for linestrengths -> stellar population information (RJS et al. 2009)

~160 “dwarf” galaxies (2-4 mag fainter than M^*). Integration ~4-10 hours per galaxy, S/N ~ 50 per Angstrom.

SDSS DR7 spectra re-analysed identically to ensure consistent treatment (Price et al. 2010).

Combined sample: ~430 galaxies.
15 ksec GALEX Cycle 5 observation of Coma core.

Combined with 20 ksec Cycle 2 observation of outskirts field to SW by Hammer et al. (2010 & LF paper submitted).
Small number of known “spectacular” stripping events in rich clusters.
Removal of gas, leading to quenching of SF eventually....
... but temporarily perhaps enhance SF in tails of stripped material.
NUV - i colour-magnitude relation for 590 confirmed members within two deep (>15ksec) Coma GALEX pointings, down to ∼M*+4.5.

All 80 blue (NUV-i<4, M_i<-17) members examined for evidence of UV tails/trails: SF in stripped gas.

Find 13 cases - not all “spectacular”!
RJS et al. 2010; Yagi et al. 2010
MegaCam

Subaru Halpha

RJS et al. 2010; Yagi et al. 2010
MegaCam
Halpha contours
Subaru Halpha
RJS et al. 2010; Yagi et al. 2010
HST/ACS
MegaCam
Halpfa contours
RJS et al. 2010; Yagi et al. 2010
MegaCam

Halpha contours

Subaru Halpha

RJS et al. 2010; Yagi et al. 2010

Subaru broad-band & Halpha (red)

HST/ACS

MegaCam

Halpna contours

Subaru Halpha
MegaCam

Hα contours

Subaru Hα

RJS et al. 2010; Yagi et al. 2010

Subaru broad-band & Hα (red)

HST/ACS

MegaCam

Hα contours

Subaru Hα

RJS et al. 2010; Yagi et al. 2010

Subaru broad-band & Hα (red)

HST/ACS
MegaCam

Halpha contours

Subaru Halpha

Subaru broad-band & Halpha (red)

HST/ACS

MegaCam

Halpha contours

Subaru broad-band & Halpha (red)

HST/ACS

RJS et al. 2010; Yagi et al. 2010
MegaCam

Halpha contours

Subaru Halpha

RJS et al. 2010; Yagi et al. 2010

Subaru broad-band & Halpha (red)

GALEX

HST/ACS

Subaru broad-band & Halpha (red)

MegaCam

Halpha contours

HST/ACS

Subaru broad-band & Halpha (red)
MegaCam
Halpha contours
Subaru Halpha
RJS et al. 2010; Yagi et al. 2010
Subaru broad-band & Halpha (red)
Subaru broad-band
& Halpha (red)
GALEX
HST/ACS
XMM
MegaCam
Halpa contours
4471
Subaru broad-band & Halpha (red)
HST/ACS
Subaru broad-band & Halpha (red)
RJS et al. 2010; Yagi et al. 2010
GSEs much more centrally concentrated than the non-GSE galaxies with similar colour.

GSE galaxies are distributed similarly to the *red* cluster members.
GSEs much more centrally concentrated than the non-GSE galaxies with similar colour.

GSE galaxies are distributed similarly to the *red* cluster members.
Within 1 Mpc, 30-40% of blue Coma members show evidence for ongoing gaseous stripping.

(Beyond 1 Mpc ~0%)
Gas-Stripping Event (GSE) statistics

Within 1 Mpc, **30-40%** of blue Coma members show evidence for ongoing gaseous stripping.

(Beyond 1 Mpc ~**0%**)
Gas-Stripping Event (GSE) statistics

Within 1 Mpc, 30-40% of blue Coma members show evidence for ongoing gaseous stripping.

(Beyond 1 Mpc ~0%)

11 / 13 tails directed away from cluster centre, i.e. stripping on approach to cluster.

-> Stripping occurs on first passage through cluster centre, and is triggered at ~1Mpc radius.
We see trends with projected radius, well within the virial radius.

Is this expected?

Aren’t clusters well-mixed at such radii?

Shouldn’t projection weaken the trends substantially?

Address this with orbital history of $\sim10,000 \ M_{\text{stel}} > 10^9 \ M_{\odot}$ members of the four most massive clusters ($\sim10^{15} \ M_{\odot}$) in Millenium Simulation.

Ignore semi-analytic predicted SFH!

Track key “life events” of each simulated galaxy...

... and compare to projected location at $z\sim0$.
Key events in life of a cluster galaxy?

Comes within 1Mpc of eventual halo-central galaxy.

Becomes a member of a

- $10^{13} \, M_{\text{sun}}$ group,
- $10^{14} \, M_{\text{sun}}$ “Virgo”,
- $10^{15} \, M_{\text{sun}}$ “Coma”
Key events in life of a cluster galaxy?

Comes within 1Mpc of eventual halo-central galaxy

Becomes a member of a

$10^{13} \, M_{\text{Sun}}$ group,

$10^{14} \, M_{\text{Sun}}$ “Virgo”,

$10^{15} \, M_{\text{Sun}}$ “Coma”
Reproducing the ongoing-stripping fraction

Can match fraction of GSEs, and low incidence of “outgoing” events, by assuming a dumb toy model where galaxies:

1) start to be stripped when they *first* come within 1Mpc,

2) remain visible for 500 Myr after this point

3) become “red” thereafter

RJS et al. 2010
SSP-equivalent ages from absorption line analyses.

Low-\(\sigma\) galaxies are younger on average (Caldwell et al. 2003; Nelan, RJS et al. 2005; etc)

What about environment?

Earlier claims of steep environmental trends in Coma-SW dwarfs, e.g. Carter et al. (2002).

Contrasts with much weaker effect in giants e.g. NFPS (RJS et al. 2006)
Age-radius-mass relations

RJS et al., in prep
Ages of giants depend mainly on “mass”

RJS et al., in prep
Ages of dwarfs depend mainly on “environment”

Ages of giants depend mainly on “mass”

RJS et al., in prep
Ages of dwarfs depend mainly on “environment”

Ages of giants depend mainly on “mass”

RJS et al., in prep
Age-radius trend: universal, not localised

South-West of Coma is “special”: ongoing merger of NGC 4839 group.

BUT: outer galaxies are younger than those in core at all azimuths.

It is the central region that is “unusual”, not the South-West!

RJS et al., in prep
Key events in life of a cluster galaxy?

Galaxies observed projected nearer cluster centre became members of clusters / groups earlier than those observed further out...
Key events in life of a cluster galaxy?

Time since incorporated into $10^{14} \, M_{\text{sun}}$ halo

Time since incorporated into $10^{13} \, M_{\text{sun}}$ halo

Galaxies observed projected nearer cluster centre became members of clusters / groups earlier than those observed further out...
Key events in life of a cluster galaxy?

Time since coming within 1Mpc of progenitor of eventual “BCG”

... and came within a given “threshold” radius earlier.

Simplistically, if SF “quenching” accompanies any of these events, we could predict age-radius trend...
Quenching time vs radius
Quenching time vs radius
Quenching time vs radius

Models: $\Delta \log(T_{M14}, T_{M13}, T_{\text{thresh}}) \approx -0.2 \frac{R_{\text{proj}}}{\text{Mpc}}$
Models: $\Delta \log(T_{M14}, T_{M13}, T_{\text{thresh}}) \approx -0.2 \frac{R_{\text{proj}}}{\text{Mpc}}$
Coma 3-degree Survey

Models: \(\Delta \log(T_{M14}, T_{M13}, T_{\text{thresh}}) \approx -0.2 \frac{R_{\text{proj}}}{\text{Mpc}}\)

Data: \(\Delta \log(T_{\text{SSP}}) \approx -0.13^{\pm}0.05 \frac{R_{\text{proj}}}{\text{Mpc}}\) (dwarfs)

Quenching time vs radius
Models: $\Delta \log(T_{M14}, T_{M13}, T_{\text{thresh}}) \approx -0.2 \, R_{\text{proj}} / \text{Mpc}$

Data: $\Delta \log(T_{\text{SSP}}) \approx -0.13 \pm 0.05 \, R_{\text{proj}} / \text{Mpc}$ (dwarfs)

Or: $\Delta \log(T_{\text{Quench}}) \approx -0.18 \pm 0.05 \, R_{\text{proj}} / \text{Mpc}$
Quenching time vs radius

Models: $\Delta \log(T_{M14}, T_{M13}, T_{\text{thresh}}) \approx -0.2 \, R_{\text{proj}} / \text{Mpc}$

Data: $\Delta \log(T_{\text{SSP}}) \approx -0.13 \pm 0.05 \, R_{\text{proj}} / \text{Mpc}$ (dwarfs)

Or: $\Delta \log(T_{\text{Quench}}) \approx -0.18 \pm 0.05 \, R_{\text{proj}} / \text{Mpc}$

Projected gradient of “key-event-times” is sufficient to explain observed age-radius trend (though need not be the sole explanation!)
Summary

\[\log \left(\frac{\text{Info(plot)}}{\text{Info(word)}} \right) \approx 3 \]
Summary

\[
\log \frac{\text{Info(\text{plot})}}{\text{Info(\text{word})}} \approx 3
\]
Summary

$$\log \frac{\text{Info(plot)}}{\text{Info(word)}} \approx 3$$
Summary

$\log \frac{\text{Info(plot)}}{\text{Info(word)}} \sim 3$
Summary

\[\log \frac{\text{Info(plot)}}{\text{Info(word)}} \approx 3 \]