DMDE

Deformable Mirror Drive Electronics

Pierre Morin, Alain Exertier, Mohammed Choubaili, Xavier Gilbert
Summary

- Requirement
- Architecture
 - DMDE rack
 - Interfaces
 - Additional equipment
 - Multiple DMDE
- DMDE boards
 - Amplifier board
 - HV channel
 - Control unit board
 - Architecture
 - Features
 - Power consumption
- Exchange protocol
 - sFPDP link
 - House Keeping link
- Timing
Mains requirements

- Actuator drive voltage: -400V to +400V
- Actuator and cable capacitive load: up to 22nF
- Maximal slew rate: 100V/ms
- High speed real time commands link
- Low latency time response
- Drive a high number of actuators (up to 10000)
Architecture: DMDE rack

- DMDE rack:
 - 19" rack, 9U high, 600 mm depth
 - Include 21 amplifier boards with 64 HV amplifier channels
 - Total number of HV channels: 1344

- DMDE front rack interface:
 - High speed data link: sFPDP
 - Housekeeping Link: RS485

- DMDE rear rack interface:
 - 1 supplies voltage + control lines connector
 - 14 HV outputs connectors
Architecture: Additional equipments

- Power rack management:
 - 19” rack, 3U high, 400 mm depth
 - Include the main power supplies required by the DMDE
 - Include security

- High voltage power supply:
 - OEM equipment on the shelves
 - Delivers +420V and -420V
Architecture: capability of control

- Up to 8 DMDE can be used simultaneously → 11104 actuators.

- sFPDP input link:
 - Provided by host computer
 - Can be chained between DMDE

- Housekeeping Link:
 - Provided by host computer
 - Can be chained between DMDE
Architecture: 2 DMDEs

Host with 1 sFPDP link and 1 HKL

- HV Power supply
- Power management rack
- DMDE
- Host

- sFPDP Optical fiber
- HKL

Host with 2 sFPDP link and 2 HKL

- HV Power supply
- Power management rack
- DMDE
- Host

- sFPDP Optical fiber
- HKL

Number of controlled actuators: up to 2688
Architecture: 4 DMDEs

Number of controlled actuators: up to 5376
DMDE: amplifier board

- 1: Amplifier board
- 2: HV amplifier board module, location of 1 channel
- 3: Control unit board
- 4: HV amplifier board module with 4 channels
DMDE: HV amplifier channel features

One source current generator and one sink current generator driven by one error amplifier.

- Output voltage: ±400V
- Output load: up to 25nF.
- Maximal output current ±10mA.
- Stable without load
DMDE: HV amplifier channel

- **Low consumption:**
 - 195mW at 22.5°C
 - 250mW at 50°C
- **Accuracy:**
 - Gain thermal stability: 35ppm/°C typ
 - Output voltage linearity error at 20°C: <0.02% of the full range
 - Offset: ±0.36V typ
 - Offset drift: ±3.4mV/°C typ
- **Maximal output current**: ±10mA → 450 V/ms with 22nF load
- **Output noise**: 30mV pkpk with a 22nF load
- **Experimental bandwidth:**
 - 4.7nF: 10kHz
 - 10nF: 4.7kHz
 - 22nF: 2kHz
DMDE: HV amplifier channel

10KHz bandwidth with 4.7nF load

- The amplifier features are:
DMDE: HV amplifier channel

4.7kHz bandwidth with 10nF load
DMDE : HV amplifier channel

2kHz bandwidth with 22nF load
DMDE: Control unit board

- Main parts:
 - FPGA
 - Processor
 - DAC
 - ADC
DMDE: Control unit board
Main features

- FPGA:
 - Connected to the sFPDP link if master
 - Process the commands sent by the sFPDP
 - Drive the DAC

- Processor
 - In charge of the housekeeping
 - Data exchange by the serial link
 - Check the HV output by acquisition of the HV with the ADC
 - Manages the board as
 - slave (position 2 to 21 inside the rack)
 - or master (position 1 inside the rack)
 - Check the interlock security
 - Check all the power supplies

- DAC: 14 bits
- ADC: 12 bits
DMDE: Control unit board
FPGA architecture

- FPGA:

![Diagram of FPGA architecture]

- Data Master Controller
 - Rx sFPDP → To numerical backplane bus
 - Tx sFPDP
 - CPU ctrl
 - SPI to DACs
 - From numerical backplane bus
 - DAC drivers
DMDE: Control unit board

FPGA DAC drivers

- According Clk1 each channel is sampled at 68kHz
• Sampling frequency: 68kHz
• The numerical filter is a first order or second order.
• This filter can be bypassed.
• The filter coefficients are the same for all the channels.
• High precision computation to get low cut-off frequency.
DMDE: Control unit board
Slew rate control

- Slew rate of each command is supervised
- Sampling frequency: 68kHz
- Cmd(n): new command
- Cmd(n-1): last command sent to the DAC
- Q: quantum, this quantum is programmable in order to adjust the slew rate
- Minimal slew rate value: 3.5V/ms

NOTICE

For CILAS mirror, the maximal slew rate value is clipped at the 100V/ms by the processor.
DMDE: Power consumption

• The consumption is given:
 • including one DMDE fully populated with 21 amplifier boards (1344 channel).
 • Including the high voltage power supply.

• In standby (without dynamical commands):

 Estimated power consumption on main power supply 230 or 110VAC 50/60Hz :

 520 (W)

• For a worth case due to the following conditions:
 • Load : 23.2 nF
 • Dynamic output voltage : 40Vrms noise, 100Hz bandwidth
 • 50°C (worth case)

 Estimated power consumption on main power supply 230 or 110VAC 50/60Hz :

 800 (W)
DMDE: sFPDP exchange Protocol

- sFPDP compatibility
 - Frame structure with:
 - Normal Data Frame
 - SYNC without Data Frame
 - SYNC with Data Frame
 - CRC is enabled
 - Copy loop mode activated (data transmitted to the next DMDE)

- Exchanged data between the host and the DMDE are packed inside messages

- Messages are packed in sFPDP frames

- All messages shall be ended with a SYNC
DMDE: sFPDP messages

<table>
<thead>
<tr>
<th>Header</th>
<th>32 bits word</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The 16 LSB bits give the first channel that will receive the first data.</td>
</tr>
<tr>
<td></td>
<td>The 16 MSB bits give the number M of commands inside the message.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Commands</th>
<th>N*32 bits word</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>This word contains the commands: Each word contains 2 commands. Inside a word, the first command is contained inside the 16 LSB bits and the second command is inside the 16 MSB bits.</td>
</tr>
<tr>
<td></td>
<td>Each command is 16 bits signed integer (two's complement). Maximal value 0x7FFF gives +400V output. Minimal value 0x8000 gives -400V output.</td>
</tr>
<tr>
<td></td>
<td>If M is even, N = M/2. If M is odd, N = (M+1)/2. Inside the last word the second command is not taken in account.</td>
</tr>
</tbody>
</table>
DMDE: Housekeeping link Protocol

- RS488 physical link
- Address several DMDEs
- Header message includes DMDE number
- Configure the DMDE behaviour
- Check the DMDE behaviour
DMDE: Timing

- From first command sent by the host to the DAC update, three mains delays:
 - sFPDP transmission
 - Transmission on the backplane bus
 - Sampling and processing of the commands
- sFPDP transmission is done simultaneously with transmission on the backplane
DMDE: Timing

- Example: let a DMDE rack fully populated (1344 commands)
- sFPDP delay: $Ts = 10.9\mu s$ (data transmission) + 700ns (processing)
- Backplane delay: $Tb = 17.9\mu s$
- Commands sampling and processing delay: Tp
 - Maximal latency: $17.7\mu s$
 - Minimal latency: $3.1\mu s$
 - Mean latency: $10.4\mu s$
- DMDE timing $\approx 700\text{ns} + Tb + Tp$
 - Maximal latency: $700\text{ns} + 17.9\mu s + 17.7\mu s = 36.3\mu s$
DMDE: the scheduling and the future

- **End of development:** December 2012

- **GTC:**
 - 1 DMDE with 384 channels (for 373 act. DM)
 - Delivery of the first equipment end of March 2013

- **NSO:**
 - 2 DMDE with 2048 channels (for ATST 1933 act. DM)
 - Delivery of the equipment in 2014

- **Could fulfill the need for:**
 - TMT (DM0 3125 actuators and DM11.2 4548 actuators)
 - ESO HODM (1377 actuators)
 - ESO future applications as MAORY (MCAO for the E-ELT)
Thanks for your attention