Reducing the Fractal Iterative Method (FRiM) to the cost of half an iteration

C. Béchet, M. Tallon

Centre de Recherches Astrophysiques de Lyon
Reminder on the Fractal Iterative Method (FRiM)

- minimum-variance reconstruction algorithm for large Adaptive Optics systems

 Thiébaut & Tallon JOSA A, 2010

- performance assessed on Octopus, ESO end-to-end AO simulator, since 2008

- preconditioned conjugate gradients (PCG), as most of the iterative AO reconstructors

- iterative method PROS
 - no full matrix multiplication
 - neither matrix inversion, nor matrix storage in FRiM
 - sparse/fast operators in FRiM
 - easier to update the model

- iterative method CONS?
 - latency increases with the number of PCG iterations
RTC latency requirements in AO

- Sensor exposure k
- Sensor exposure $k+1$
- Sensor exposure $k+2$
- Read-out k
- Read-out $k+1$
- Reconstruction k
- Reconstruction $k+1$
- Control k
- Control $k+1$
- Amplitude k
- Mirror shape k

Time

RTC latency
RTC latency requirements in AO

- most time spent in the reconstruction, and particularly in the PCG
FRiM iterations vs RTC latency requirements

- Projection on DM (proj) and pseudo open-loop control with integrator (\(\int \)) (Gilles, 2003)
- \(r_0 \) and \(r_f \), PCG residuals (initial and final) for iterations
- \(w_0 \) and \(w_f \), starting guess and final estimate
- "warm-start": \(w_0 \leftarrow w_f \) (because slow evolution of the turbulent wavefront)
- projection on DM (proj) and pseudo open-loop control with integrator (\int) (Gilles, 2003)
- r_0 and r_f, PCG residuals (initial and final) for iterations
- w_0 and w_f, starting guess and final estimate
- "warm-start": $w_0 \leftarrow w_f$ (because slow evolution of the turbulent wavefront)

- iterations need to be done sequentially
- more iterations means more latency until commands are applicable
- several iterations required to obtain best performance in this classical scheme
Examples of FRiM performance vs #iterations

- **E-ELT**
 - 42-m telescope (central obs.: 0.28)
 - 500 Hz loop frequency
 - Cn2 profile: 9 layers, \(r_0 = 12.9 \text{ cm} \)

- **single-conjugate AO:**
 - DMs: 0 km (85 x 85)
 - 1 NGS, 84x84 subap.
 - \(10^5 \) photons/frame/subap.
 - \(\tau_0 = 2.8 \text{ ms} \)

- **multi-conjugate AO (MAORY):**
 - DMs: 0 km (85 x 85), 4 km (47 x 47), 12.7 km (53 x 53)
 - 6 LGS, 84 x 84 subap.
 - on a Ø 2 arcmin circle
 - 500 ph/subap.
 - RON 3e-
 - 2 NGS for tip/tilt, 1 NGS for 2 x 2 subap.
 - on a Ø 2.7 arcmin circle
 - 500 ph/subap., H band
 - RON 5e-

3 PCG iterations required for the best performance
back to the classical scheme

PCG iterations

"warm-start": w_f

w_0

r_0

w_f

proj

RTC latency

DM commands

WFS data

PCG iterations
back to the classical scheme

- but 3 iterations of FRiM takes too long for the latency specifications
back to the classical scheme

- but 3 iterations of FRiM takes too long for the latency specifications
- solutions?
 - reduce the number of iterations with a better preconditioner. But more computations per iteration
but 3 iterations of FRiM takes too long for the latency specifications

solutions?
 – reduce the number of iterations with a better preconditionner. But more computations per iteration

 – restrict to 1 iteration of FRiM to meet latency requirement and …
but 3 iterations of FRiM takes too long for the latency specifications

solutions?

- reduce the number of iterations with a better preconditionner. But more computations per iteration

- restrict to 1 iteration of FRiM to meet latency requirement and ... apply 3 iterations of FRiM to improve the future “warm-start”
but 3 iterations of FRiM takes too long for the latency specifications

solutions?
 – reduce the number of iterations with a better preconditionner. But more computations per iteration
 – restrict to 1 iteration of FRiM to meet latency requirement and … apply 3 iterations of FRiM to improve the future “warm-start”
A low-latency scheme for FRiM involves iter 1, iter 2, iter 3, and proj. The diagram illustrates the flow of data and commands. The consequences of this scheme are:

- Low-latency path is reduced to the cost of 1 iteration.
- 3 iterations in SCAO < 1 WFS exposure time.
- Best performance is maintained thanks to an optimal "warm-start" (preliminary results by simulations).
Results with low-latency scheme

- simulations E-ELT SCAO
- FRiM + Octopus
- 500Hz

1) vs measurement noise (flux)

- no impact at low flux
- good “warm-start” = key point to afford 1 iteration at high SNR
Results with low-latency scheme

- simulations E-ELT SCAO
- FRiM + Octopus
- 500Hz

1) vs measurement noise (flux)
 - no impact at low flux
 - good “warm-start” = key point to afford 1 iteration at high SNR

2) vs wind speed
 (atmosphere coherence time τ_0)
 - high flux conditions
 - again good “warm-start”= key point
 - also helps for high wind speeds
reducing to the cost of half an iteration

- computations for the low-latency branch (only 1 iter.) can be revisited
- only the first iteration to be applied
 - PCG 1rst iteration = steepest descent
 - simplified computations (no need to update the residuals)

<table>
<thead>
<tr>
<th>classical FRiM 1rst iter.</th>
<th>low-latency FRiM 1 iter.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathbf{p} = \mathbf{M}_{\text{diag}} \cdot \mathbf{r})</td>
<td>(\mathbf{p} = \mathbf{M}_{\text{diag}} \cdot \mathbf{r})</td>
</tr>
<tr>
<td>(\rho = \mathbf{p}^T \cdot \mathbf{r})</td>
<td>(\rho = \mathbf{p}^T \cdot \mathbf{r})</td>
</tr>
<tr>
<td>(\mathbf{q} = (\mathbf{K}^T \cdot \mathbf{S}^T \cdot \mathbf{W}_e \cdot \mathbf{S} \cdot \mathbf{K} + \mathbf{I}) \cdot \mathbf{p})</td>
<td>(\mathbf{q} = \mathbf{W}_e^{1/2} \cdot \mathbf{S} \cdot \mathbf{K} \cdot \mathbf{p})</td>
</tr>
<tr>
<td>(\alpha = \rho / \mathbf{p}^T \cdot \mathbf{q})</td>
<td>(\alpha = \rho / (\mathbf{q}^T \cdot \mathbf{q} + \mathbf{p}^T \cdot \mathbf{p}))</td>
</tr>
<tr>
<td>(\mathbf{u} = \mathbf{u} + \alpha \cdot \mathbf{p})</td>
<td>(\mathbf{u} = \mathbf{u} + \alpha \cdot \mathbf{p})</td>
</tr>
<tr>
<td>(\mathbf{r} = \mathbf{r} - \alpha \mathbf{q})</td>
<td>(\mathbf{r} = \mathbf{r} - \alpha \mathbf{q})</td>
</tr>
</tbody>
</table>
reducing to the cost of half an iteration

- computations for the low-latency branch (only 1 iter.) can be revisited

- only the first iteration to be applied
 - PCG 1st iteration = steepest descent
 - simplified computations (no need to update the residuals)

<table>
<thead>
<tr>
<th>classical FRiM 1rst iter.</th>
<th>low-latency FRiM 1 iter.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p = M_{\text{diag}} \cdot r$</td>
<td>$p = M_{\text{diag}} \cdot r$</td>
</tr>
<tr>
<td>$\rho = p^T \cdot r$</td>
<td>$\rho = p^T \cdot r$</td>
</tr>
<tr>
<td>$q = (K^T \cdot S^T \cdot W_e \cdot S \cdot K + I) \cdot p$</td>
<td>$q = W_e^{1/2} \cdot S \cdot K \cdot p$</td>
</tr>
<tr>
<td>$\alpha = \rho / p^T \cdot q$</td>
<td>$\alpha = \rho / (q^T \cdot q + p^T \cdot p)$</td>
</tr>
<tr>
<td>$u = u + \alpha \cdot p$</td>
<td>$u = u + \alpha \cdot p$</td>
</tr>
<tr>
<td>$r = r - \alpha q$</td>
<td></td>
</tr>
</tbody>
</table>

half of the heavy computations of 1 iteration
no longer an iterative reconstructor
Conclusions

- For iterative methods, RTC latency is constrained by the # of iterations
 - sequential iterations
 - although only 3 are required for best performance of FRiM

- We developed a new low-latency application of FRiM, based on:
 - 1 iteration for the commands computation
 - 3 iterations to improve the warm-start of the next reconstruction

- First results from simulations demonstrate the efficiency of the improved “warm-start”

- The computational cost of 1 iteration only is half the cost of a classical iteration

- With only 1 iteration, the reconstruction is no longer iterative. This may be applied to any iterative method…