CANARY 101

- MOAO technology demonstrator for EAGLE
 - The proposed E-ELT MOAO instrument
 - MOAO: Multi-Object AO
- On 4.2m William Herschel Telescope
 - Visitor instrument
 - First light 2010
 - Second light 2012
- 4 NGS (3 open-loop, 1 closed-loop truth sensor)
- 1 LGS
 - 3 more May 2013
- On-axis correction
 - 1 MOAO channel
 - Open-loop correction
CANARY 101

• MOAO technology demonstrator for EAGLE
 - The proposed E-ELT MOAO instrument
 - MOAO: Multi-Object AO
• On 4.2m William Herschel Telescope
 - Visitor instrument
 - First light 2010
 - Second light 2012
• 4 NGS (3 open-loop, 1 closed-loop truth sensor)
• 1 LGS
 - 3 more May 2013
• On-axis correction
 - 1 MOAO channel
 - Open-loop correction
The CANARY bench
CANARY Real-time control

- Uses DARC
 - The Durham AO Real-time Controller
 - Downloadable from Sourceforge
 - Completely generic
 - CANARY is one usage example
- Principally a CPU based controller
 - Optional FPGA front-end
 - Optional GPU reconstruction
 - Modular design ideal for CANARY
 - Lots of algorithms to test and try
CANARY experiences

- A complex system
- Multiple wavefront sensors (of different types)
 - LGS and NGS
- Multiple offload loops
 - TT, LGS steering and alignment, LGS asterism rotation and tracking, telescope offloads (autoguider etc)
- Multiple trigger signals
 - Lasers at 10kHz, synchronised with LGS camera at 100-500Hz and range gate at 10kHz
 - NGS triggers
Synchronisation

- Using a custom programmable FPGA based trigger box
- Multiple BNC and fibre outputs
 - And inputs (unused)
- Provides the required flexibility
Algorithms

- Lots of algorithms tried and used
- Lots of practical experience garnered
 - Let's have a look at some of the more interesting things...
Image calibration

• If background subtraction is wrong:
 - Poor slope estimate → poor reconstruction
 - Critical performance loss for open-loop AO

• So, we use a “brightest pixel” selection algorithm to help
 - In each sub-aperture, the N (typically ~12-40) brightest pixels are selected
 - All others are set to zero
 • i.e. fall below the background
Brightest pixels

- But this can introduce bias
 - So, improvements made:
 - The N+1th brightest pixel value can be used as the threshold
 - This is subtracted from all brighter pixels
 - Reduces bias
 - Further improvements:
 - N+1 → N+M pixels can be averaged to be used as the threshold
 - Reduces the randomness (due to read noise) in the threshold
- Used with great effect on CANARY
 - Slope variance and WFE reduced
Brightest pixels

- But this can introduce bias.
 - So, improvements made:
 - The N+1th brightest pixel value can be used as the threshold.
 - This is subtracted from all brighter pixels.
 - Reduces bias.
 - Further improvements:
 - N+1 → N+M pixels can be averaged to be used as the threshold.
 - Reduces the randomness (due to read noise) in the threshold.
- Used with great effect on CANARY
 - Slope variance and WFE reduced.
Brightest pixels

- The N+1th brightest pixel value can be used as the threshold.
- This is subtracted from all brighter pixels, reducing bias.
- Further improvements:
 - N+1 → N+M pixels can be averaged to be used as the threshold, reducing randomness due to read noise.
 - Used with great effect on CANARY:
 - Slope variance and WFE reduced.
Brightest pixels

- But this can introduce bias
- So, improvements made:
 - The $N+1$th brightest pixel value can be used as the threshold
 - This is subtracted from all brighter pixels
 - Reduces bias
- Further improvements:
 - $N+1 \rightarrow N+M$ pixels can be averaged to be used as the threshold
 - Reduces the randomness (due to read noise) in the threshold
 - Used with great effect on CANARY
 - Slope variance and WFE reduced
But this can introduce bias. So, improvements made:

- The N+1th brightest pixel value can be used as the threshold.
- This is subtracted from all brighter pixels.
- Reduces bias.

Further improvements:

- N+1 → N+M pixels can be averaged to be used as the threshold.
- Reduces the randomness (due to read noise) in the threshold.

Used with great effect on CANARY.

- Slope variance and WFE reduced
But this can introduce bias

So, improvements made:

- The N+1th brightest pixel value can be used as the threshold
- This is subtracted from all brighter pixels
- Reduces bias

Further improvements:

- N+1 → N+M pixels can be averaged to be used as the threshold
- Reduces the randomness (due to read noise) in the threshold
- Used with great effect on CANARY
 - Slope variance and WFE reduced
And LGS example
Adaptive windowing

- CANARY off-axis WFS are open-loop
 - Large spot motions \rightarrow large sub-apertures
- Spot tracking
 - Per sub-aperture or as groups (for TT)
 - Sub-apertures are shrunk
 - Adaptive windowing switched on
 - Sub-aperture location defined by open-loop integrator based on current spot location
 - User defined gain
 - Typically we reduce sub-aperture area by x4
Adaptive problems

- Noise or short bursts of bad turbulence can mean spots get lost
- Sub-apertures then wander
 - Until they fix on a spot (which may be from a neighbouring sub-aperture)
- So: Limit the range of motion
- But: Can still get stuck at the edge of allowed motion (e.g. vignetted sub-apertures or when TT offload is wrong)
 - This is noticeable for CANARY
 - But with 80x80 sub-apertures and >6 WFS not
 - So, automatic unsticking logic added
 - If sub-aperture is at the edge of allowed motion for some user defined time, resets to the centre
 - Worked well even under very poor seeing conditions
Sub-aperture resizing

- User controlled (or scripted)
- Nothing clever in the real-time core
 - Though something could easily be added...!
Adaptive windowing
Correlation WFSing

- CANARY uses Rayleigh lasers
- Spot elongation can be controlled by adjusting the laser range gate
 - Allowing studies of different spot elongations
 - Well suited for testing correlation based wavefront sensing
- Linear, ideal for open-loop WFS
Solar correlation primer

- Reference image taken from a single sub-aperture from a single frame
 - Used for all sub-apertures
 - Typically updated every 30s
 - Insensitive to Tip/Tilt between successive reference images
 - Jump in science image position
 - But this doesn't matter since science integration time is ~few seconds
Solar correlation primer

- Reference image taken from a single sub-aperture from a single frame
 - Used for all sub-apertures
 - Typically updated every 30s

(Array of subaperture images)

Compute cross-correlations using off-the-shelf DSP processors

(Rimelle et al, 2011)
Astronomical correlation

- Integration times much longer than correlation reference update time
- Elongated LGS spots differ between sub-apertures (radial pattern)
 - Cannot use the solar approach
- SHS images much fainter
- So:
 - Correlation reference obtained by averaging $O(10)$ WFS frames \rightarrow depending on SNR
 - A different reference image for each sub-aperture
 - Update of reference slopes also required
 - Correlate new reference image with current reference image (for each sub-aperture)
 - Compute CoG of this correlation (for each sub-aperture)
 - Add these values to the current reference slopes
 - Successful update of reference image and slopes while loop closed
Astronomical correlation

- Integration times much longer than correlation reference update time
- Elongated LGS spots differ between sub-apertures (radial pattern)
 - Cannot use the solar approach
- SHS images much fainter
- So:
 - Correlation reference obtained by averaging O(10) WFS frames → depending on SNR
 - A different reference image for each sub-aperture
 - Update of reference slopes also required
 - Correlate new reference image with current reference image (for each sub-aperture)
 - Compute CoG of this correlation (for each sub-aperture)
 - Add these values to the current reference slopes
 - Successful update of reference image and slopes while loop closed
Canary correlation details

- We use FFT-based correlation
 - Zero-padding necessary for extreme elongation
 - i.e. at the edge of pupil
 - Otherwise correlated image is biased
 - But this introduces extra computation
 - And is unnecessary when spot size is small
 - So we allow zero padding extent to be defined on a per-sub-aperture basis
 - Fast enough for Solar AO systems (20x20 subaps, 2kHz)
- WFS mode defined on a per-sub-aperture basis
 - Allows different techniques for NGS and LGS
Correlation: With no padding
4 pixel padding
8 pixel padding
Wavefront control

- MVM is the standard reconstructor for CANARY
 - SCAO → conventional least squares using SVD
 - GLAO (open-loop) → simple averaging off-axis WFS
 - MOAO → Learn and Apply algorithm
 - A GPU option is available and used on-sky
 - But not necessary for CANARY
Additional wavefront control

- Dynamically loadable modules allows rapid change between algorithms
 - And development while on-sky
- LQG: optimal control
 - Used in SCAO and MOAO modes
 - With and without LGS
 - Significant performance improvement seen when compared with L&A
 - State vector of size 238 for SCAO, ~800 for MOAO
CuRe and DiCuRe

- Also tested for SCAO
- Results in a later talk
Mobile DARC

- First instance of AO on a phone?
Mobile DARC

- First instance of AO on a phone?
Other Canary systems

- Dual quad-core AMD server (2008 vintage)
 - Main RTCS system
 - SFPDP for WFS input (4 NGS, 1/4 LGS)
 - DM output by socket to a DMC PC
 - Also running DARC for a figure sensor
 - Mirror control using a COTS 96 channel DAC card
- 2 PCs for non-real-time tasks (GUIs, data processing, statistics, storage etc)
- DARC also used for:
 - Science camera
 - LGS acquisition camera
 - LGS beam steering camera
 - Separate operation of LGS WFS
 - Allowing simultaneous NGS MOAO operation and LGS tweaking/optimisation
 - Consistent interface for all cameras
Other Canary systems

- Dual quad-core AMD server (2008 vintage)
 - Main RTCS system
 - SFPDP for WFS input (4 NGS, 1/4 LGS)
 - DM output by socket to a DMC PC
- Also running DARC for a figure sensor
- Mirror control using a COTS 96 channel DAC card
- 2 PCs for non-real-time tasks
- DARC also used for:
 - Science camera
 - LGS acquisition
 - LGS beam steering
 - Separate operation of LGS WFS
 - Allowing simultaneous NGS MOAO operation and LGS tweaking/optimisation
 - Consistent interface for all cameras
Offload loops

- Telescope autoguider
 - Offload based on:
 - mean WFS slope from one/all NGS WFS
 - WFS Flux
 - Tip/tilt of wavefront
 - Tip/tilt mirror demands
 - Truth sensor slopes no good when loop closed
 - Automagically swaps to mirror demands
 - Sensibly handles situations where no data arrives
 - And when flux is too low
 - And when the telescope is no longer autoguiding!

- Laser steering mirror
 - Using LGS slope measurements
 - Taking not of flux

- Laser beam combination
 - Itself a close loop AO system on M2

- Laser asterism rotation
 - Using 4-LGS slope measurements
Offload loops

- Telescope autoguider
 - Offload based on:
 - mean WFS slope from one/all NGS WFS
 - WFS Flux
 - Tip/tilt of wavefront
 - Tip/tilt mirror demands
 - Truth sensor slopes no good when loop closed
 - Automagically swaps to mirror demands
 - Sensibly handles situations where no data arrives
 - And when flux is too low
 - And when the telescope is no longer autoguiding!

- Laser steering mirror
 - Using LGS slope measurements
 - Taking not of flux

- Laser beam combination
 - Itself a close loop AO system on M2

- Laser asterism rotation
 - Using 4-LGS slope measurements
Offload loops

- Telescope autoguider
 - Offload based on:
 - mean WFS slope from one/all NGS WFS
 - WFS Flux
 - Tip/tilt of wavefront
 - Tip/tilt mirror demands
 - Truth sensor slopes no good when loop closed
 - Automagically swaps to mirror demands
 - Sensibly handles situations where no data arrives
 - And when flux is too low
 - And when the telescope is no longer autoguiding!

- Laser steering mirror
 - Using LGS slope measurements
 - Taking not of flux

- Laser beam combination
 - Itself a close loop AO system on M2

- Laser asterism rotation
 - Using 4-LGS slope measurements
Offload loops

- Telescope autoguider
 - Offload based on:
 - mean WFS slope from one/all NGS WFS
 - WFS Flux
 - Tip/tilt of wavefront
 - Tip/tilt mirror demands
 - Truth sensor slopes no good when loop closed
 - Automagically swaps to mirror demands
 - Sensibly handles situations where no data arrives
 - And when flux is too low
 - And when the telescope is no longer autoguiding!

- Laser steering mirror
 - Using LGS slope measurements
 - Taking note of flux

- Laser beam combination
 - Itself a close loop AO system on M2

- Laser asterism rotation
 - Using 4-LGS slope measurements
Canary results

Comparison between SCAO-MOAO-GLAO on A47
(08-28-2012)

SCAO MOAO GLAO

K-band
H-band
J-band

-150 -100 -50 0 50 100
Canary results

- K-Band: 2.2 μm
- H-Band: 1.65 μm
- J-Band: 1.28 μm
Canary results
Notes

- Lots of fancy algorithms used in CANARY
- All helped to improve performance
- Can such complexity scale to the E-ELT?
 - We know we can scale basic AO for most E-ELT instruments
 - Including MAORY, EAGLE
 - Calibration (DN,BG,FF), WCoG, MVM
 - Using a small number of PCs/GPUs
 - But haven't yet studied performance with these extra algorithms
Ongoing work

- Implementation of robustness algorithms
 - Single button AO
- Other reconstructors for CANARY
 - Shop open for tests...!
- Implementation of full DARC pipeline in GPU
 - While maintaining the full feature set
Conclusions

- A number of complex algorithms all helped improve CANARY performance