The SAFARI Imaging Spectrometer for the SPICA space observatory
From planets to galaxies, revealing the origins of the universe

Frank Helmich1, Peter Bothmer2, Martin Giard1, Francesca Najjarian1, Kees Verheijen3, Willem Jeltema4, Brian Jackson1, Bruce Swinyard1, Marc Audard1, Anna di Giorgio1, Javier Gutiérrez3, Matt Griffin1, Franz Kerber4, Michael Meyer4, David Naylor2, Alfredo Pillitteri5, Luigi Spinoglio6, Bart Vandenbussche7

1 SRON Netherlands Institute for Space Research, Groningen, The Netherlands; 2 KReST, Astronomical Institute, Groningen, The Netherlands; 3 IRAM, Toulouse, France; 4 CHUVITA, Madrid, Spain; 5 TIRA, Durham, United Kingdom; 6 University College London, United Kingdom; 7 DSO, Amsterdam, The Netherlands; 8 IPE, Ram, Italy; 9 Cardiff, United Kingdom; 10 University of Vienna, Vienna, Austria; 11 ETH, Zurich, Switzerland; 12 KUL, Leuven, Belgium

The Japanese SPInfrared telescope for Cosmology and Astrophysics, SPICA, will provide astronomers with a long awaited new window on the universe. Having a large cold telescope cooled to only 6K above absolute zero, SPICA will provide a unique environment where instruments are limited only by the cosmic background itself. A consortium of European and Canadian institutions has been established to design and implement the Spectra FAR infrared Instrument SAFARI, an imaging spectrometer designed to fully exploit this extremely low far infrared background environment provided by the SPICA observatory.

SAFARI’s large instantaneous field of view combined with the extremely sensitive Transition Edge Sensing detectors will allow astronomers to very efficiently map large areas of the sky in the far infrared – in a square degree survey of a 1000 hours many thousands of faint sources will be detected. A large fraction of these sources will be fully spectroscopically characterised by the instrument. Efficiently obtaining such a large number of complete spectra will be essential to address several fundamental questions in current astrophysics: how do galaxies form and evolve over cosmic time?, what is the true nature of our own Milky Way?, and why and where do planets like those in our own solar system come into being?

SAFARI science – the multi-colored universe

The key science drivers for SAFARI

How do stars and galaxies form and evolve over cosmic ages?

SAFARI will be used to observe thousands of obscured, far away galaxies and determine what processes govern their evolution

How does our solar system relate to other planetary systems and could life evolve elsewhere?

Herschel-PACS image of the debris ring surrounding the nearby star Fomalhaut. The ring is caused by colliding rocky bodies, probably similar to those in the solar system Kuiper belt. A planet is believed to be responsible for stirring the debris ring. SAFARI will be used to obtain spectroscopic maps of these kinds of sources, allowing detailed studies of the mineral, molecular and atomic constituents across such a disk.

Fomalhaut

The Hubble eXtreme Deep Field (or XDF), assembled by combining 10 years of NASA Hubble Space Telescope photographs taken of a patch of sky in the constellation Fornax. XDF reveals about 5,500 galaxies, both nearby and very distant, making it the deepest image of the universe. The faintest galaxies are one ten-billionth the brightness of what the human eye can see.

Tracing the evolution of galaxies over cosmic time

By taking spectra of thousands of galaxies out to high redshift, the evolution of these objects over cosmic timescales can be followed. SAFARI will readily detect atomic and molecular lines, and possibly even PAsHs out to redshifts of 3 to 4. This will allow us to determine which of the different formation and evolution processes is the dominant one; star formation or black hole accretion.

The SAFARI instrument

The SAFARI instrument is an imaging Fourier Transform Spectrometer. It operates simultaneously in three wavelength bands to cover the 34-310um range over the full field of view. Within one hour in a single field SAFARI will typically observe spectra for 5-7 individual sources, thus allowing large area surveys yielding data for many thousands of objects.

SAFARI is split in two major components – the optics and the detectors in the cold at the focal plane unit, and the control and readout electronics in the SPICA service module.

To reach the extreme sensitivity needed to fully profit from the unique low background condition provided by the SPICA satellite, SAFARI uses Transition Edge Sensors operated at 50mK in the three detector arrays.

From gas and dust to planets

SAFARI’s study of protoplanetary disks; from ices to oceans. With SAFARI we can trace the presence dusty disks similar to our Kuiper Belt out to ~150 pc and provide a comprehensive inventory of stars with circumstellar disks for future planet imaging facilities. We will be able to study the transition from protoplanetary to debris disks which is of prime importance to understand the process of planet formation. We will resolve the “snow line” in nearby “Vega” disks and follow the main gas coolants and key chemical species (e.g., water, oxygen, organics) in protoplanetary disks.

The SAFARI Consortium

Partners from Europe and around the world have formed an international consortium, led by SRON of a patch of sky in the constellation Fornax. XDF reveals about 5,500 galaxies, both nearby and very distant, making it the deepest image of the universe. The faintest galaxies are one ten-billionth the brightness of what the human eye can see.

The Dutch participation in SAFARI funded in part through grant 18R.032.209 from the NWO Roadmap for large scale research infrastructure.

The SPICA satellite

The Japanese SPICA satellite, to be launched in 2022, will provide a 3 meter class 6K cold telescope. This will allow astronomers for the first time also to image infrared sources as weak as the celestial background.

SAFARI

The SAFARI Imaging Spectrometer for the SPICA space observatory From planets to galaxies, revealing the origins of the universe

Herschel-PACS image of the debris ring surrounding the nearby star Fomalhaut. The ring is caused by colliding rocky bodies, probably similar to those in the solar system Kuiper belt. A planet is believed to be responsible for stirring the debris ring. SAFARI will be used to obtain spectroscopic maps of these kinds of sources, allowing detailed studies of the mineral, molecular and atomic constituents across such a disk.

The Hubble eXtreme Deep Field (or XDF), assembled by combining 10 years of NASA Hubble Space Telescope photographs taken of a patch of sky in the constellation Fornax. XDF reveals about 5,500 galaxies, both nearby and very distant, making it the deepest image of the universe. The faintest galaxies are one ten-billionth the brightness of what the human eye can see.

Tracing the evolution of galaxies over cosmic time

By taking spectra of thousands of galaxies out to high redshift, the evolution of these objects over cosmic timescales can be followed. SAFARI will readily detect atomic and molecular lines, and possibly even PAsHs out to redshifts of 3 to 4. This will allow us to determine which of the different formation and evolution processes is the dominant one; star formation or black hole accretion.

The SAFARI instrument

The SAFARI instrument is an imaging Fourier Transform Spectrometer. It operates simultaneously in three wavelength bands to cover the 34-310um range over the full field of view. Within one hour in a single field SAFARI will typically observe spectra for 5-7 individual sources, thus allowing large area surveys yielding data for many thousands of objects.

SAFARI is split in two major components – the optics and the detectors in the cold at the focal plane unit, and the control and readout electronics in the SPICA service module.

To reach the extreme sensitivity needed to fully profit from the unique low background condition provided by the SPICA satellite, SAFARI uses Transition Edge Sensors operated at 50mK in the three detector arrays.

From gas and dust to planets

SAFARI’s study of protoplanetary disks; from ices to oceans. With SAFARI we can trace the presence dusty disks similar to our Kuiper Belt out to ~150 pc and provide a comprehensive inventory of stars with circumstellar disks for future planet imaging facilities. We will be able to study the transition from protoplanetary to debris disks which is of prime importance to understand the process of planet formation. We will resolve the “snow line” in nearby “Vega” disks and follow the main gas coolants and key chemical species (e.g., water, oxygen, organics) in protoplanetary disks.

The SAFARI Consortium

Partners from Europe and around the world have formed an international consortium, led by SRON of a patch of sky in the constellation Fornax. XDF reveals about 5,500 galaxies, both nearby and very distant, making it the deepest image of the universe. The faintest galaxies are one ten-billionth the brightness of what the human eye can see.

The Dutch participation in SAFARI funded in part through grant 18R.032.209 from the NWO Roadmap for large scale research infrastructure.

The SPICA satellite

The Japanese SPICA satellite, to be launched in 2022, will provide a 3 meter class 6K cold telescope. This will allow astronomers for the first time also to image infrared sources as weak as the celestial background.