Direct imaging characterisation of (exo-) planets with METIS

Wolfgang Brandner (MPIA) with contributions by Ian Crossfield, Lisa Kaltenegger (MPIA), Sascha Quanz (ETH), Eric Pantin (CEA Saclay) and the METIS science team

Jupiter
VLT/ISAAC

HR8799
VLT/NACO

Saturn
Cassini/VIMS

Wolfgang Brandner (MPIA) with contributions by Ian Crossfield, Lisa Kaltenegger (MPIA), Sascha Quanz (ETH), Eric Pantin (CEA Saclay) and the METIS science team
Outline

1. Motivation and Challenge
2. eXtreme Adaptive Optics (XAO) at the E-ELT
3. Giant planet characterization
4. Prospects for detection and characterisation of Super-Earths and exo-Neptunes
Direct Imaging - Why bother?

<= Talk by Gael Chauvin

• derive orbital parameters and constraints on outward migration

• study exoplanet atmospheres not subject to strong irradiation

• young systems: study interaction between planet and disk

Why extend studies of exoplanets to the MIR?
Exoplanet characterisation - the challenge

Key requirements for direct detection:

- high angular resolution $\ll 1''$
- high contrast $>1:10^7$
- high signal-to-noise ratio

Flux ratio Jupiter/Sun:

- **optical** to J-band: reflected star light probing upper cloud layers
- **mid-IR**: intrinsic thermal emission of exoplanet, probing deeper atmospheric layers + optimal contrast planet/star
2. eXtreme Adaptive Optics (XAO) at the E-ELT

eXtreme AO operational at the VLT since late 2001: NACO in L&M-band

Eps Eridani at $\lambda=4 \, \mu m$ (NB4.05)

NACO
SR = 85% ($t_{exp}=1160s$)

Field of View: 27”x27”

inner ~50 Airy rings detected

E-ELT adaptive M4 has actuator density projected on the primary mirror of 1/0.5m (~6000 actuator on ~40m mirror) <= comparably to VLT/NACO

E-ELT/METIS with NGS AO is capable of achieving SR >75% in L-band, >80% in M-, and >90% in N-band on bright stars (I=10 to 12 mag)
3. Giant planet characterisation

Spectral features of ultra-cool brown dwarf ULAS J0034-00 ($T_{\text{eff}} \sim 550$K)

$T=550 \text{ g}=300 \text{ m/H}=+0.3$

H_2O

CH_4

$K_{zz}=10^4$

\Rightarrow models (red) reproduce spectral features (black) of cool brown dwarfs reasonably well

Leggett et al. 2009
3. Giant planet characterization

Standard model of cool, cloudy atmospheres

- stratification (absence of pronounced vertical mixing)
- deeper layers are hotter (no temperature inversion)
- chemical equilibrium
- local thermal equilibrium

Model assumptions

- ~125 K
- 600 - 1200 K
- 1200 - 2000 K
- ~2200 K

Cloud condensations remove species from the higher atmospheric layers (no metal-oxides in L-dwarfs, no Li in T-dwarfs, etc.)

=> MIR observations probe deeper atmospheric layers, and constrain and test atmospheric models

Katharina Lodders 2004 (Science)
SPITZER (red): 3.6 to 8.0 μm secondary transit observations of TrES-4

Atmospheric models can be “degenerate” in the NIR
MIR observations allow to distinguish between model parameters

=> temperature inversion in exoplanet atmosphere (Knutson et al. 2009)
one possible explanation of the observations

=> broad wavelength coverage is essential for studying exoplanets
Chemical characteristics of exoplanet atmospheres

HR 8799: 4 exoplanets with masses in the range ~7 to ~12 M$_{\text{Jupiter}}$. L’-band spectroscopy of the directly imaged exoplanet HR 8799c (Janson et al. 2010)

Strategy:
- Use long-slit, place both the star and one of the planets in the slit (monitor telluric features simultaneously with obtaining science data)
- Nod along the slit every 100s, integrate for 10000s per half night

HR 8799c, 10 M$_{\text{Jup}}$, $T_{\text{eff}} = 1100$K

L’=15.6mag (0.14 mJy, S/N ≈ 30)
L’=14.7mag
L’=5.2mag

Planets detected in 300s imaging (±0.4 s with E-ELT/METIS)

Spectral trace of exoplanet
3. Giant planet characterization

Chemical characteristics of exoplanet atmospheres

- More CO, less CH$_4$ than expected
- $CH_4 + H_2O \leftrightarrow CO + 3H_2$

Sign for i) non-equilibrium chemistry, or ii) smaller atmospheric scale heights, or iii) temperature inversion, or iv) young age, or ...
3. Giant planet characterization

METIS imaging sensitivity

METIS in LMN-bands: sensitivity gain ~500 compared to VLT

E-ELT/METIS facilitates detailed (low-res) spectral characterization of directly imaged exoplanets detected in the NIR at separations closer than what JWST could resolve

Extrapolation of current sample ~10 to 20 directly imaged exoplanets to the year 2024:

Prospects for spectral characterization of ~100s of directly imaged giant exoplanets
4. Super-Earth and exo-Neptunes in the Solar Neighbourhood

SCR 1845-6537 has ~40 to 50 M\(_{\text{Jup}}\) (Biller et al. 2006; Kasper et al. 2007)

Eps Indi B has a binary brown dwarf as companion with a system mass ~120 M\(_{\text{Jup}}\) (McCaughrean et al. 2004, Cardoso et al. 2009, King et al. 2010)

Eps Eri is suspected to house multiple giant planets

Alp Cen Bb with \geq 1.1 Earth masses
Direct Imaging observations of Alpha Cen Bb

Bb

\[M \star \sin i = 1.13 \, M_{\text{Earth}} \]

\[a = 6 \, \text{Mio km} \]

\[T_{\text{Planet}} \leq 1180K \]

For comp.: Lava 1000 – 1500K

something amiss with the artist's impression?
4. Super-Earth and exo-Neptunes

J-band detection of known exoplanets

Known Targets for E-ELT High-contrast Observations:

Crossfield 2013, in press; arXiv:1301.5884

4. Super-Earth and exo-Neptunes

=> strong science case for PCS (see talk by Markus Kasper) and TMT/GMT equivalents

Wolfgang Brandner (MPIA)

Shaping E-ELT science and instrumentation, Ismaning, 26. February 2013
L-band detection of known exoplanets

Known Extrasolar Planets: 39 m, 3.50 \(\mu \)m

Crossfield 2013, in press; arXiv:1301.5884

=> METIS could detect some of the wider and cooler exoplanets below the detection threshold of MICADO/PCS, and provide complementary long-wavelength spectral characterisation for sources detected by PCS at shorter wavelength

=> detection of “lava” planet Alpha Cen Bb at 1\(\lambda / D \) in MIR “challenging” => see poster by Olivier Absil on MIR vector vortex coronagraph
M-band detection of cool and “distant” exoplanets identified by radial velocity (RV) studies

RV detected planets within METIS IWA

4. Super-Earth and exo-Neptunes

16 of the presently known RV (giant) planets could be imaged by E-ELT/METIS in M-band in 1 hr of integration time each. Detection of exo-Neptunes in M-band requires longer integration times

=> see poster by Sascha Quanz for more details
4. Super-Earth and exo-Neptunes

N-band detection prospects

Simulated planet population (based on Kepler results) expected to be detectable by METIS direct imaging as a function of planetary radius and equilibrium temperature.

METIS is particularly sensitive to planets that are relatively small (2-4 Earth radii) and quite cool (equilibrium temperature 200-350 K), i.e. planets located close to the habitable zone.

=> see poster by Ian Crossfield for more details

Wolfgang Brandner (MPIA)

Crossfield 2013, in press; arXiv:1301.5884
Summary: MIR exoplanet imaging and characterisation

mid-IR: optimal contrast planet/star + study of intrinsic thermal emission of exoplanets

Scientific topics:

* Atmospheric composition and chemistry
* Atmospheric temperature profile
* Weather and seasons
* Exoplanet orbital parameters (astrometry)
* Formation of giant planets (core accretion, disk instability)
* Detection and characterisation of Super-Earths and Neptunes in the habitable zone around nearby stars