Diffraction-limited E-ELT imaging in the blue with intensity interferometry

Dainis Dravins — Lund Observatory
Cesare Barbieri & Giampiero Naletto — University of Padova

www.astro.lu.se/~dainis
Quantum Optics for Astronomical Imaging

- **Intensity interferometry** first quantum-optical experiment
- Measures two-photon properties, second-order coherence
- Name is a misnomer: Actually nothing is interfering
- **Pro:** Insensitive to atmospheric turbulence, optical errors
- **Con:** Requires large flux collectors, fast electronics
Intensity interferometry ... the early days

Flux collectors at Narrabri

R. Hanbury Brown: *The Stellar Interferometer at Narrabri Observatory*

Sky and Telescope 28, No.2, 64, August 1964
\[P_1 = \alpha_1 \langle I_1 \rangle \Delta t \]

\[P_2 = \alpha_2 \langle I_2 \rangle \Delta t \]

\[P_{12} = \alpha_1 \alpha_2 \langle I_1 \rangle \langle I_2 \rangle (1 + |\gamma_{12}|^2) \Delta t^2 \]

D.Dravins, S.LeBohec, H.Jensen, P.D.Nuñez:
Intensity interferometry

Pro: Time resolution of 10 ns, say, implies 3 m light travel time; no need for more accurate optics nor atmosphere.

Short wavelengths no problem; hot sources observable

Con: Signal comes from two-photon correlations, increases as signal squared.

Realistic time resolutions require high photometric precision, therefore large flux collectors.
Software telescopes in radio and the optical

Low-frequency radio waves, ~100 MHz
Many antennas, huge data flows.
Radio-wave amplitude sampled 12 bits deep.
Spectral resolution ~1 kHz, bandwidth 32 MHz.
Measures first-order coherence.
Large, central on-line data processing facility.

Optical Intensity Interferometer

Low-frequency optical fluctuations, ~100 MHz
Many telescopes, moderate data flows.
Photon counts recorded (1 bit).
Spectral resolution by optical filters.
Measures second-order coherence.
Moderate on-line or off-line data processing.

D. Dravins, S. LeBohec, H. Jensen, P. D. Nuñez, CTA Consortium
Digital intensity interferometry

★ Observe with numerous telescopes or subapertures
★ Fast digital detectors & high-speed signal handling
★ Combine optical apertures in software
★ Huge number of baselines, no loss of digital signal
★ With 100 subapertures: \(N \times (N-1)/2 \sim 5000 \) baselines
★ Filled \((u,v)\)-plane enables 2-dimensional imaging
S/N in intensity interferometry

PROPORTIONAL TO:
★ Telescope areas (geometric mean)
★ Detector quantum efficiency
★ Square root of integration time
★ Square root of electronic bandwidth
★ Photon flux per optical frequency bandwidth

INDEPENDENT OF:
★ Width of optical passband
Simulated observations in intensity interferometry

Squared visibility from a close binary star.
Left: Pristine image; Right: Logarithm of magnitude of Fourier transform

D.Dravins, S.LeBohec, H.Jensen, P.D.Nuñez:
Simulated observations of binary stars of visual magnitudes 3, 5, and 7. Total integration time: 20 hours; λ 500 nm, time resolution 1 ns, quantum efficiency = 70% Array layout: CTA D

<table>
<thead>
<tr>
<th>Cherenkov telescopes</th>
<th>E-ELT</th>
</tr>
</thead>
<tbody>
<tr>
<td>★ Huge collecting area, (\sim 10,000 \text{ m}^2)</td>
<td>★ 40 m Ø ↔ 64 telescopes of 5 m Ø</td>
</tr>
<tr>
<td>★ Davies-Cotton telescopes not isochronous, light spread (\sim) few ns</td>
<td>★ Isochronous optics permits very fast detectors down to (\sim) 10 ps</td>
</tr>
<tr>
<td>★ Large PSF, (\sim) few arcmin, PMT’s</td>
<td>★ Small PSF reduces skylight, enables small solid-state detectors</td>
</tr>
<tr>
<td>★ Non-collimated light complicates use of color filters</td>
<td>★ Collimated light enables narrow-band filters, multiple spectral bands</td>
</tr>
<tr>
<td>★ Separated telescopes, long signal lines, electronic source tracking</td>
<td>★ Compact focus, no signal transmission, telescope tracks source</td>
</tr>
<tr>
<td>★ Limiting magnitude (m_v \sim 8)</td>
<td>★ Limiting magnitude might reach extragalactic sources</td>
</tr>
</tbody>
</table>
Image reconstruction

Second-order coherence $g^{(2)}$

$$g^{(2)}(\tau) = 1 + |g^{(1)}(\tau)|^2$$

Does not retain phase information, direct image reconstruction not possible.

Imaging requires retrieval of Fourier phases from amplitudes.

Feasible if dense coverage of (u,v)-plane
Numerical simulations of intensity-interferometry observations with a CTA-like array, with image reconstruction of a star with three hotspots.

Pristine image has $T = 6000$ K; spots have 6500K (top-right and left) and 6800K.

Simulated data correspond to visual magnitude $m_v = 3$, and 10 hours of observation.

Kilometer-scale diffraction-limited optical imager:

Cherenkov Telescope Array Array as an Intensity Interferometer

Expected resolution for assumed exoplanet transit across the disk of Sirius

Stellar diameter = 1.7 solar
Distance = 2.6 pc
Angular diameter = 6 mas

Assumed Jupiter-size planet with rings;
four Earth-size moons;
equatorial diameter = 350 µas.

CTA array spanning 2 km;
Resolution 50 µas at λ 400 nm provides more than 100 pixels across the stellar diameter
Eta Carinae

NACO near-IR adaptive optics image from ESO VLT *Yepun*
Composite image: J, H, K bands & narrow-band filters @ 1.64, 2.12, 2.17 μm
(ESO Press release eso0817)

Diffraction in 8 m telescope @ λ 2 μm \sim 60 mas

E-ELT: 5 \times larger diameter
Intensity interferometry @ λ 400 nm: 5 \times shorter wavelength

Intensity interferometry @ E-ELT: \sim 2 mas
E-ELT

Adaptive optics @ 2 μm vs. Intensity interferometry @ 400 nm
Practical realization?

“A segmented telescope looks like a fully densified stellar interferometer.”

(Isabelle Surdej, E-ELT Active Phasing Experiment, 2008)
Small 'technical' instrument
(already during E-ELT construction phase?)

★ Lenslet array images E-ELT subapertures onto fast photon-counting detectors

★ Basically a Shack-Hartmann wavefront sensor

★ Electronic signal of photon streams is handled by on-line firmware or off-line software

★ Can use incompletely filled aperture, unadjusted mirror segments, poor seeing

★ Optical aperture synthesis and diffraction-limited imaging by software!
ESO Instrument Studies for OWL and Extremely Large Telescopes (2005)

QUANTEYE

HIGHEST TIME RESOLUTION, REACHING QUANTUM OPTICS

• Other instruments cover seconds and milliseconds
• QuantEYE will cover milli-, micro-, and nanoseconds, down to the quantum limit!
DIGITAL PHOTON CORRELATORS @ Lund Observatory
700 MHz clock rate (1.4 ns time resolution)
200 MHz maximum photon count rates per channel (pulse-pair resolution 5 ns)
8 input channels for photon pulses at TTL voltages

Custom-made by Correlator.com for applications in intensity interferometry
Intensity Interferometry correlator
Multi-channel, real-time, FPGA
32 channels $\sim 20 \text{ k€}$

ALMA correlator
134 million processors

Very much more modest computations than in radio interferometry!
Autocorrelation functions of the Crab pulsar, measured by photon-counting avalanche photodiodes in the OPTIMA instrument, computed by a real-time digital signal correlator of QVANTOS Mark II (Lund Observatory). The rise below 1 µs is due to detector afterpulsing.
Analyzing photon-counting detectors

Afterpulsing, afterglow and other signatures could mimic intensity correlations

Single-photon-counting avalanche photodiode detectors being evaluated @ Lund Observatory for digital intensity interferometry

(made by: ID Quantique; Micro Photon Devices; PerkinElmer; SensL)
Left: AquEYE mechanics. Above the pyramid is the pinhole defining the aperture on the sky and used also for the mechanical alignment on the optical bench.

Right: AquEYE optomechanical assembly during alignment. Two of the four MPD SPADs are visible. The mirror above AquEYE feeds the reference beam from the interferometric unit used for alignment and laboratory tests.

SUMMARY

Proposed small ‘technical’ instrument

★ E-ELT science already during years of construction phase

★ Photon-counting Shack-Hartmann wavefront sensor

★ Shack-Hartmann function for telescope optical diagnostics; Photon correlation signal for its mechanical diagnostics

★ Software access to signal enables aperture synthesis imaging with intensity interferometry, also high-speed photometry
THE END