Molecular Gas & Star Formation in the Centers of Nearby Galaxies

Karin M. Sandstrom
Bok Postdoctoral Fellow
University of Arizona, Steward Observatory

3D2014 Garching, Germany
March 12, 2014
Collaborators

the KINGFISH Team -
P.I. Robert Kennicutt, Daniela Calzetti, Gonazlo Aniano, Phillip Appleton, Lee Armus, Pedro Beirao, Alberto Bolatto, Bernhard Brandl, Rodrigo Herrara Camus, Alison Crocker, Kevin Croxall, Daniel Dale, Bruce Draine, Jennifer Donovan Meyer, Chad Engelbracht, Maud Galametz, Armando Gil de Paz, Karl Gordon, Brent Groves, Caina Hao, George Helou, Joannah Hinz, Leslie Hunt, Ben Johnson, Jin Koda, Oliver Krause, Kathryn Kreckel, Adam Leroy, Sharon Meidt, Eric Murphy, Eric Pellegrini, Nurur Rahman, Hans-Walter Rix, Helene Roussel, Marc Sauvage, Eva Schinnerer, Ramin Skibba, J. D. Smith, Sundar Srinivasan, Tessel van der Laan, Laurent Vigroux, Fabian Walter, Bradley Warren, Christine Wilson, Mark Wolfire & Stefano Zibetti

the THINGS & HERACLES Teams -
P.I. Fabian Walter, Adam Leroy, Frank Bigiel, Elias Brinks, Erwin de Blok, Daniela Calzetti, Kelly Foyle, Gaelle Dumas, Robert Kennicutt, Carsten Kramer, Sharon Meidt, Hans-Walter Rix, Erik Rosolowsky, Eva Schinnerer, Andreas Schruba, Karl Schuster, Antonio Usero, Axel Weiss
Galaxy centers host more extreme conditions compared to disks.

Galaxy centers are where starbursts, AGN, outflows, etc exist.

SF in centers has potential to alter galaxy morphology over time.
Multi-Wavelength View of Nearby Galaxies:

- HI - THINGS (Walter et al. 2008)
- CO - HERACLES (Leroy et al. 2009, 2013)
- Dust - SINGS & KINGFISH (Kennicutt et al. 2003, 2011)
- Star Formation - GALEX NGS, SINGS & other optical narrow-band or IFU surveys
- metallicity, stellar mass, dynamics, etc.
Questions:

• How do we trace molecular gas in galaxy centers?

• What is the star formation efficiency like in these regions?

• What role does SF in galaxy centers play in galaxy evolution?
\(\alpha_{\text{CO}} \) is low in some galaxy centers

Sandstrom et al. 2013
Ackermann et al. 2012
Fermi-LAT γ-ray constraints

\(\alpha_{\text{CO}} \) consistently found to be low in central \(\sim kpc \).

Dahmen et al. 1998
\(\text{C}^{18}\text{O} \) observations

MW disk \(\alpha_{\text{CO}} \) overestimates mol. mass by factor \(\sim 10 \)

Sodroski et al. 1995
\(\Sigma_{\text{dust}} + \text{DGR(Z)} \)

MW disk \(\alpha_{\text{CO}} \) overestimates mol. mass by factor \(\sim 3-10 \)

Milky Way CO-to-H\(_2\) conversion factor is low in the center too...
Why is α_{CO} lower in the centers?

- If molecular gas in bound clouds (GMCs):
 - density, temperature, turbulence, can change α_{CO}

- If there aren't "clouds" but instead molecular gas is in a more extended/diffuse phase:
 - chemistry/radiative transfer/excitation can change (e.g. Liszt & Pety (2010))
 - velocity dispersion enhanced due to grav. potential and dynamics in the center (e.g. ULIRGS)
Effects of molecular cloud properties on α_{CO}.

- normal mol. cloud
- more turbulence
- warmer gas
Why is α_{CO} lower in the centers?

molecular gas temperature plays a role...

Survey of 22 galaxies with *Herschel* SPIRE-FTS
(200-600 µm spectroscopy)
PI J.D. Smith

Trend for higher CO excitation in centers with low α_{CO}.

Sandstrom & BtP Team, in prep

![Beyond the Peak](image.png)
Evidence for enhanced CO excitation in centers with low α_{CO} from BtP.
Why is α_{CO} lower in the centers?

- If molecular gas in bound clouds (GMCs):
 - density, temperature, turbulence, can change α_{CO}
- If there aren’t “clouds” but instead molecular gas is in a more extended/diffuse phase:
 - chemistry/radiative transfer/excitation can change (e.g. Liszt & Pety (2010))
 - velocity dispersion enhanced due to grav. potential and dynamics in the center (e.g. ULIRGS)
Questions:

• How do we trace molecular gas in galaxy centers?

• What is the star formation efficiency like in these regions?

• What role does SF in galaxy centers play in galaxy evolution?

Gas Depletion Time
\[\tau_{\text{dep}} \equiv \frac{\Sigma_{\text{H}_2}}{\Sigma_{\text{SFR}}} \]

Star Formation Efficiency
\[\text{SFE} \equiv \frac{\Sigma_{\text{SFR}}}{\Sigma_{\text{H}_2}} \]
Subset with low incl and α_{CO} measured in Sandstrom et al (2013)

RGB = (IRAC 8, 4.5, 3.6 μm)
SFE increasing

- SABcd: weakly barred
- SAab: oval
- SABcd: un-barred
- SBb: barred
- SABbc: un-barred
- SABcd: oval
- SAAAbb: un-barred
What causes higher SFE in the barred/oval galaxy centers?
Questions:

• How do we trace molecular gas in galaxy centers?

• What is the star formation efficiency like in these regions?

• What role does SF in galaxy centers play in galaxy evolution?
Implications for Secular Evolution

“...the slow rearrangement of energy and mass that results from interactions involving collective phenomena such as bars, oval disks, spiral structure, and triaxial dark halos.”

- Kormendy & Kennicutt 2004 ARA&A

Stellar Bar/Oval

Drives gas inflow

Gas concentration builds in center

Star formation & pseudobulge growth
Sakamoto et al. 1999
Barred galaxies have higher central concentrations of gas.

...but this assumes MW α_{CO}!
After applying our α_{CO}, barred & non-barred galaxies have similar concentrations.

If star-formation is much more efficient, do we expect gas concentrations to build?
Summary

• The CO-to-H_2 conversion factor is different in some galaxy centers.

• Tracing H_2 properly reveals SFE enhancements in barred/oval galaxy centers.

• SFE enhancements may play a role in secular evolution.

• ALMA observations can show what is different about molecular gas in these regions.