Surface Magnetism of Cool and evolved stars
10-year Harvest with the Spectropolarimeters

Agnès Lèbre, University of Montpellier, France
Agnes.Lebre@umontpellier.fr

ESPaDOnS@CFHT
Narval@TBL
HARPSpol@ESO
Outline:

- **Spectropolarimetry** Circular and Linear Polarisation

- **Cool and Evolved stars**: sharing main characteristics and physical processes

- **Magnetic Fields in cool and evolved stars** (Circular polarisation: Stokes V)
 - RGB & early-AGB magnetic fields
 - TP-AGB magnetic fields (Mira stars)
 - Post-AGB stars (RV Tauri stars) / PN magnetism
 - RSG magnetic fields (special focus: Betelgeuse)

- **Atmospheric dynamics** (Linear polarisation: Stokes Q and Stokes U)

- **Toward Near-IR spectropolarimeters**

Active giants (global dynamo)
Descendant of Ap stars (magneto-convection)

Amplification by shock waves?

Turbulent dynamo
Spectropolarimetry: Circular and Linear Polarisation

- **ESPaDOnS@CFHT**
 - 2004+
 - 3.60m Telescope
 - Spectral Range: 375 – 1050 nm
 - Spectral Resolution: 65 000

- **Narval@TBL**
 - 2006+
 - 2m Telescope
 - Spectral Range: 380 – 690 nm
 - Spectral Resolution: 115 000

Simultaneous measurements in two polarisation states:

⇒ Stokes I (unpolarised) spectrum
+ Stokes V (circularly) or Stokes U or Stokes Q (linearly) polarised spectrum

⇒ Polarisation **within spectral** (atomic) lines
 Polarimetric sensitivity $\sim 10^{-4}$ of the unpolarised continuum
Circular Polarisation:

Mean Zeeman shift of a transition

\[\Delta \lambda_B = \frac{\lambda^2 \mu_0 B}{4 \pi m_e c^2} = 4.67 \times 10^{-12} \lambda^2 g_{\text{eff}} B \]

\(g_{\text{eff}} \) : Land\`{e} factor (sensitivity of a transition to B)

If **weak magnetic field** (\(< 100 \) G) :

Polarised signatures undetectable at the level of individual lines

=> A multiplex approach over the observed spectral range (thousands of atomic lines involved)

The Least Square Deconvolution (L.S.D.)

(Donati et al., 1997)

Estimation of \(B_l \), the **Longitudinal Component of the Magnetic Field** :

First-order moment method

(Rees & Semel, 1979) adapted to LSD profiles.
Cool & evolved stars

Convection
Large-scale convective motions in an extended atmosphere, with few giant cells covering the surface (Freytag & Höfner, 2008)

Pulsation (Mira/RV Tauri) periodically generate radiative shocks waves => convection-pulsation

Mass loss
Heavy mass loss: radiation pressure on dust (Höfner, 2011) levitation due to shocks

Evolutionary stage of an intermediate mass star before its transition toward the Planetary Nebulae stage.

Bug Nebula (From, Amiri Ph.D. 2011)

ESO Garching STEPS15 - 8 July 2015
During the transition from AGB to PN:

Severe change of the morphology of the circumstellar envelope of an AGB (departure from spherical symmetry)

Binarity ? Magnetic fields ?

and

Observational evidences of magnetic fields around PNe and AGB /post-AGB

(talks: W. Vlemmings; L. Sabin; A. Duthu)
Sample of 48 single G-K giants (24 with activity signatures)

29 Zeeman detections (with Narval/ESPaDOnS)

The most active magnetic giants are concentrated in a « Magnetic Strip »?

1rst Dredge-up and Core Helium burning phases.

Evolutionnary models:
Solar metallicity with rotation (Charbonnel et al., in prep.)

Convective turnover timescale

$$\tau_{\text{max}} = \left(\alpha H_p \right) / V_{\text{conv}}$$
Preliminary trends with rotation from 16 G-K Giants
with known rotational period (Prot from few 10s of days to few 100s of days)

α-ω type dynamo
Sub-G regime

Saturation of the dynamo?

Ap star descendant candidates:
fossil field interacting with convection

(Aurière et al., 2011; Tsetkova et al., 2013)
Preliminary trends with rotation from 16 G-K Giants
with known rotational period (Prot from few 10s of days to few 100s of days)

Ap star descendant candidates:
fossil field interacting with convection

(Aurière et al., 2011; Tsetkova et al., 2013)

α-ω type dynamo in these stars with Prot < 200 days

Ro : Rossby number
Ratio of inertial to Coriolis force

(Ro = Prot / τ_{max})
Exploration of unbiased sample (magV < 4)

40 Red Giants
(with Narval/ESPaDOnS)

Magnetic RGB/AGB with Bl < 1 Gauss (e.g. Pollux)

« 2nd magnetic strip »:
Tip RGB / AGB

- low surface rotation
- convection
⇒ Local dynamo ?

Transitory fields ?

~ 50% of our RGB/AGB with a magnetic field at the Gauss level
Magnetic field and activity is more common than expected!
Kepler Giants with seismic constraints \cite{Mosser2012}
Angular momentum transfer from the core to the convective envelope
=> Constraints on/from the dynamo?

Zeeman Doppler Imaging on few targets so far
\cite{Donati1999, Petit2004}
- RS CVn stars (active binaries)
- FK Com stars (very fast rotators and active giants)
and on Pollux
\cite{Auriere2014}

3D MHD simulation of the convective envelope
(with ASH code)
Dipolar configuration
\cite{Palacios2014}
Thermal Pulsing-AGB (2-4 M_\text{sun})

Circumstellar magnetic field through CSE from Masers SiO & CN lines

⇒ Geometry of the field : \(B \sim 1/r\) ...
(Herpin et al. 2006, 2009; Vlemmings et al. 2011)

Mira Stars

\(\alpha\) Ceti and \(R\) Leo (M-type Miras)

- Balmer lines in emission
 ⇒ shock wave (atmospheric dynamics)
 + linear polarization @ max. of light (Fabas et al., 2011, A&A, 535, 12)

- photospheric field \(\sim\) a few G (expected from theoretical works: Thirumalai & Heyl, 2013)
 but not detected (so far ?) with Narval

\(\chi\) Cyg (S-type Mira) : Detection of a weak photospheric magnetic field (Lèbre et al., 2014)
⇒ Connexion surface magnetic field - atmospheric shock wave
First detection of a surface magnetic field on a Mira star

Narval observations of χ Cyg around its 2012 maximum light

Definite Detection
$\chi^2 = 1.81$, $fap = 5.2 \times 10^{-10}$

Surface field estimation: 2-3 G

Stokes V signal: associated to the blue component of the I profile
Stokes I profile: typical line doubling of metallic lines due to a shock wave in the atmosphere.

Post-AGB stars/ PPNe magnetism

Detection of large scale magnetic fields in the circumstellar environment mainly from radioastronomy (Sabin et al., 2013; Vlemmings et al., 2011)

CRL 618, OH 231.8+4.2 : studied with sub-mm polarimetry
OH 231.8+4.2: well defined and organized polar magnetic field (continuum cm linear polarization: alignment of non-spherical spinning dust grains)
No detection in molecular lines (Goldreich-Kylafis effect)
Role in dragging and collimating of the (high velocity) bipolar outflow still unclear ...

The first positive detections of a photospheric magnetic (ESPaDOnS)
=> more in L. Sabin’s talk, tomorrow!

Planetary Nebulae:
small-scale structures due to magnetic fields
Detection of large scale magnetic fields in the nebulae
Central star: **null or inconclusive detections** : no K.Gauss field!
(Jordan et al., 2012; Leone et al., 2014, Steffen et al., 2014)
Detection of surface magnetic field in RV Tauri stars

Narval observations July 2014

Impact of atmospheric shock waves?

R Scuti (pulsation period ~ 142 days)

Bl = 0.6 ± 0.6 G
Spectropolarimetric monitoring of pulsating variables: \(R \) Sct

Impact of atmospheric shock waves?
Circular polarization (Stokes U & Q)

1: DD $B_l = 0.6 \pm 0.72$ G

2: MD $B_l = -0.23 \pm 0.72$ G

3: ND $B_l = -1.62 \pm 0.83$ G

(Sabin et al., 2015)
Linear polarization (Stokes U & Q)

1: U: ND; Q: DD

2: U: DD; Q: DD

3: U: DD; Q: DD

LSD profiles: Thousand lines involved!

(Lèbre et al., 2015, IAU 305, in press)
R Sct: Linear polarization detected in individual lines!

SrI@460.7 nm and TiI@564.4 nm

(Lèbre et al., 2015, in press)
R Sct: Linear polarization detected in individual lines!

See Benjamin Tessore’s poster (N°34)!

Magnetic Field of variable cool and evolved stars:
Interaction with complex atmospheric dynamics

![Graph showing linear polarization](image)
X Cyg : Linear polarization

The shock favours a direction, inducing a net linear polarization.

In agreement with Fabas et al., 2011

Departure from spherical symmetry at the photospheric level.
also seen from interferometric data (Ragland et al., 2006)

Stokes Q :
Definite Detection
($\chi^2=3.01$)

Stokes U :
Definite Detection
($\chi^2=4.57$)

Stokes V :
No Detection (1 sequence)
($\chi^2=1.16$)
Noise level ~ 0.5×10^{-4}

LSD profiles : thousand lines involved !

ESO Garching STEPS15 - 8 July 2015
Magnetic fields in Red Super Giants (RSG)

Red Supergiants:

Are they all magnetic stars?

Common occurrence of magnetic fields at the (sub-)Gauss level in F- to K-type RSG.

(Grunhut et al. 2010)

In M-type RSG?
Detection of surface field in Betelgeuse (M-type RSG)

\[P_{\text{rot}} = 17 \text{ years} \]
\[(Kervella et al., 2009) \]

\[R_o \sim \frac{P_{\text{rot}}}{\tau_{\text{conv}}} \]

\[\Rightarrow R_o \sim 90 \]
not able to sustain a \(\alpha-\omega \) type dynamo

The large-scale convective motions can generate small-scale dynamo action, and thus transitory fields.

Geometry of magnetic field remains unknown!
Variations of the magnetic field of Betelgeuse (2009-2012)

Field variability < 1 month !
(stellar rotation 17 years !)

Consistent with convective timescales
(Dorch & Freytag, 2004)

(Bedecarrax et al., 2013) long term monitoring in progress with Narval
Variations at the surface of Betelgeuse

Chiavassa et al. 2011
And also on **Betelgeuse** !
Full Stokes QUVI → Same behavior than on Miras !

Strong linear polarisation signal within atomic lines
(and a marginal detection on V, from a single sequence)

LSD with maks composed of ~16 000 metallic lines !

Linear polarisation in the lines
(individual / global) :

Line depolarisation of the continuum polarised by Rayleigh scattering.

(Josselin et al., 2015, in press)

a potential diagnostic of photospheric asymmetries ...

(Aurière et al., 2015, in preparation)
Main scientific specifications:

- Spectral Domain: 0.98-2.35 µm (simultaneous)
- Spectral Resolution: 75 000
- Accuracy_VR: 1 m/s
- Achromatic circular and linear polarimetry
- S/N~100 per pixel (2.3 km/s) @ H=11.0 - 9.5
- Zeeman effect easy to detect in nIR:

\[
\Delta \lambda_B = \frac{\lambda_0^2 eB}{4\pi m_ec^2} = 4.67 \times 10^{-12} \lambda_0^2 g_{eff} B
\]

Main scientific drivers:

- Exo-earths around M dwarfs
- Stellar and Planetary Formation
 + Other Science

=> **Cool and Evolved Stars**

Necessity to improve the knowledge on parameters \(g_{eff}\) for molecular lines (TiO).
Weak magnetic field commonly detected among cool and evolved stars

Necessity for a multiplex approach to reveal Sub-G level surface fields
+ a dedicated observational strategy

Linear polarisation can help to reveal photospheric structure
+ magnetic field diagnostic?

Plenty of data already available (POLARBASE tool) in the Visible
+ the nIR window is coming soon!