VLBI Techniques
Bob Campbell, JIVE

- VLBI Arrays: a brief tour
- Model / delay constituents
- Getting the most out of VLBI phases
 - Observing tactics / propagation mitigation
- Wide-field mapping
- Concepts for the VLBI Tutorial
The EVN

[Image of a globe with various locations marked, including Arecibo, Cambridge, Effelsberg, and others. A red circle highlights the word EVN on a bar code.]
The EVN (European VLBI Network)

- Composed of existing antennas
 - generally larger (32m - 100m): more sensitive
 - baselines up to 10k km (8k km from Ef to Shanghai, S.Africa)
 - down to 17 km (with Jb-Da baseline from eMERLIN)
 - heterogeneous, generally slower slewing

- Frequency coverage [GHz]:
 - workhorses: 1.4/1.6, 5, 6.0/6.7, 2.3/8.4, 22
 - niches: 0.329, UHF (~0.6-1.1), 43
 - frequency coverage/agility not universal across all stations

- Real-time e-VLBI experiments

- Observing sessions
 - Three ~3-week sessions per year
 - ~10 scheduled e-VLBI days per year
 - Target of Opportunity observations
EVN Links

- **Main EVN web page:** www.evlbi.org
 - **EVN Users’ Guide:** Proposing, Scheduling, Analysis, Status Table
 - **EVN Archive**

- **Proposals:** due 1 Feb., 1 June, 1 Oct. (23:59:59 UTC)
 - via NorthStar web-tool: proposal.jive.eu [.nl]

- **User Support via JIVE (Joint Institute for VLBI ERIC)**
 - www.jive.eu
 - RadioNet trans-national access

- **Links to proceedings of the biennial EVN Symposia:**
 - www.evlbi.org/meetings
 - History of the EVN in *Porcas, 2010, EVN Symposium #10*
Real-time e-VLBI with the EVN

- Data transmitted from stations to correlator over fiber
- **Correlation proceeds in real-time**
 - Improved possibilities for feedback to stations during obs.
 - Much faster turn-around time from observations → FITS; permits EVN results to inform other observations
 - Denser time-sampling (beyond the 3 sessions per year)
 - EVN antenna availability at arbitrary epochs remains a limitation
- Disk-recorded vs. e-VLBI: different vulnerabilities
 - e-shipping approaching best of both worlds
The VLBA (Very Long Baseline Array)

- Homogeneous array (10x 25m)
 - planned locations, dedicated array
 - Bslns ~8600-250 km (~50 w/ JVLA)
 - faster slewing
 - HSA (+ Ef + Ar + GBT + JVLA)

- Frequency agile
 - down to 0.329, up to 86 GHz

- Extremely large proposals
 - Up towards 1000 hr per year

- Globals: EVN + VLBA (+ GBT + JVLA)
 - proposed at EVN proposal deadlines (1Feb, 1Jun, 1Oct)
 - VLBA-only proposals: 1Feb, 1Aug

- VLBA URL: science.nrao.edu/facilities/vlba
East Asian VLBI Networks

- **Chinese (CVN):** 4 ants., primarily satellite tracking
- **Korean (KVN):** 3 ants., simultaneous 22, 43, 86, 129 GHz
- **VERA:** 4 dual-beam ants., maser astrometry 22-49 GHz
 - KaVA == KVN + VERA
- **Japanese:** various astronomical & geodetic stations
Other Astronomical VLBI Arrays

- **Long Baseline Array**
 - Only fully southern hemisphere array
 - Can now propose joint EVN+LBA obs
 - growing number of east-Asian EVN stations provide lots of N-S baselines
 - LBA—western EVN ~12k km (< 1 hr)

- **Global mm VLBI Network (GMVA)**
 - Effelsberg, Onsala, Metsahövi, Pico Veleta, NOEMA, KVN, (most) VLBAs, Green Bank

- **86 GHz**
- **~2 weeks of observing per year**
- **Coordinated from MPIfR Bonn**
IVS (International VLBI Service)

- **VLBI** as space geodesy
 - cf: GPS, SLR/LLR, Doris
- **Frequency**: 2.3 & 8-9
 - some at 8-9 & 27-34
- **Geodetic VLBI tactics**:
 - many short scans
 - fast slews
 - uniform distribution of stations over globe

- **VGOS**: wide-band geodetic system (4x 2GHz over 2-14 GHz)
 - future: unmatched time-series of geodetic-source images
- **IVS web page**: ivscc.gsfc.nasa.gov
- **History of geodetic VLBI (pre-IVS)**:
Some rule-of-thumb VLBI scales

- Representative angular scales: 0.1 — 100 mas

- Physical scales of interest:
 - Angular-diameter distance \(D_A(z) \)
 - Proper-motion distance \(D_M(z) \) \(\rightarrow \) \(\mu \) to \(\beta_{\text{app}} \) conversion
 - \(D_A \) turns over with \(z \) (max \(z \sim 1.6 \)), \(D_M \) doesn’t

- Brief table (using Planck 2015 cosmology parameters, from J.P. Rachen colloquium, Dwingeloo 11jun2015):

<table>
<thead>
<tr>
<th>(z)</th>
<th>(D_A) (for 1 mas)</th>
<th>(\beta_{\text{app}}) (for 0.1 mas/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>6.4 pc</td>
<td>3.1 c</td>
</tr>
<tr>
<td>1</td>
<td>8.3 pc</td>
<td>5.4 c</td>
</tr>
<tr>
<td>1.6</td>
<td>8.4 pc</td>
<td>7.4 c</td>
</tr>
<tr>
<td>3</td>
<td>8.0 pc</td>
<td>10.3 c</td>
</tr>
</tbody>
</table>
VLBI vs. shorter-BI

- **Sparser u-v coverage**
- More stringent requirements on correlator model to avoid de-correlating during coherent averaging
- No truly point-like primary flux calibrators in sky
- Independent clocks & equipment at the various stations

\[\tau = B \cdot s / c \]

- Max \(\tau \) = 21 ms
- Max \(\dot{\tau} \) = 1.55 us/s

at C-band:

(106\(\lambda \))

(7700 cyc/s)
VLBI *a priori* Model Constituents

- Station / Source positions: different frames (ITRF, ICRF), motions
- Times: UTC, TAI, TT, UT1, TDB/TCB/TCG
- Orientation: Precession (50″/yr), Nutation (9.6″, 18yr), Polar Motion (0.6″, 1yr)
- Diurnal Spin: Oceanic friction (2ms/cy), CMB (5ms, dcds), AAM (2ms, yrs)
- Tides: Solid-earth (30cm), Pole (2cm)
- Loading: Ocean (2cm), Hydrologic (8mm), Atmospheric (2cm), PGR (mm's/yr)
- Antennas: Axis offset, Tilt, Thermal expansion
- Propagation: Troposphere (dry [7ns], wet [0.3ns]), Ionosphere
- Relativistic τ(t) calculation: Gravitational delay, Frame choice/consistency
VLBI \textit{a priori} Model: References

- IERS Tech. Note #36, 2010: \textit{IERS Conventions 2010}
 - \url{www.iers.org} link via Publications // Technical Notes
- Urban & Seidelmann (Eds.) 2013, \textit{Explanatory Supplement to the Astronomical Almanac} (3rd Ed.)
- IAU Division A (Fundamental Astronomy; \textit{was} Div. I)
 - \url{www.iau.org/science/scientific_bodies/divisions/A/info}
- SOFA (software): \url{www.iausofa.org}
- Global Geophysical Fluids center: \url{geophy.uni.lu}
- Older (pre-IAU 2000 resolutions):
 - \textit{Explanatory Supplement to the Astronomical Almanac} 1992
 - Seidelmann & Fukushima 1992, \textit{A&A}, 265, 833 \textit{(time-scales)}
VLBI Delay (Phase) Constituents

Conceptual components:

\[\tau_{\text{obs}} = \tau_{\text{geom}} + \tau_{\text{str}} + \tau_{\text{trop}} + \tau_{\text{iono}} + \tau_{\text{instr}} + \varepsilon_{\text{noise}} \]

Instrumental Effects
Source Structure
Source/Station/Earth orientation

\[\tau_{\text{geom}} = -\left[\cos \delta \left\{ b_x \cos H(t) - b_y \sin H(t) \right\} + b_z \sin \delta \right] / c \]

where: \(H(t) = \text{GAST} - \text{R.A} \)

and of course: \(\varphi = 2\pi \omega \tau_p \) for \(\varphi_{\text{obs}} : \pm N_{\text{lobes}} \)
Closure Phase

- $\phi_{\text{cls}} = \phi_{AB} + \phi_{BC} + \phi_{CA}$
- Independent of station-based $\Delta\phi$
 - propagation
 - instrumental
- But loses absolute position info
 - degenerate to $\Delta\phi_{\text{geom}}$ added to a given station

- However, ϕ_{str} is baseline-based: it does not cancel
 - Closure phase can be used to constrain source structure
 - Point source \rightarrow closure phase $= 0$
 - Global fringe-fitting / Elliptical-Gaussian modelling

Difference Phase

- Another differential φ measure
 - pairs of sources from a given bsln
- (Near) cancellations:
 - propagation (time & angle between sources)
 - instrumental (time between scans)
- There remains differential:
 - φ_{str} (ideally, reference source is point-like)
 - φ_{geom} (contains the position offset between the reference and target)

- Differential astrometry on sub-mas scales:
 \Rightarrow Phase Referencing \Leftarrow
Phase-Referencing Tactics

- Extragalactic reference source(s) (i.e., tied to ICRF2)
 - Target motion on the plane of the sky in an inertial frame

- Close reference source(s)
 - Tends towards needing to use fainter ref-sources

- Shorter cycle times between/among the sources
 - Shorter slews (close ref-sources, smaller antennas)
 - Shorter scans (bright ref-sources, big antennas)

- High SNR (longer scans, brighter ref-sources, bigger antennas)

- Ref.src structure (best=none; if not, then not a function of ν or t)

- In-beam reference source(s) – no need to “nod” antennas
 - Best astrometry (e.g., Bailes et al. 1990, Nature, 319, 733)
 - Requires a population of (candidate) ref-sources
 - VERA multi-beam technique / Sites with twin telescopes
Where to Get Phs-Ref Sources

- RFC Calibrator search tool (L. Petrov)
- VLBA Calibrator search tool
 - Links to both via www.evlbi.org
 - under: VLBI links // VLBI Surveys, Sources, & Calibrators
 - List of reference sources close to specified position
 - FD's (var. ν's) on short & long |B|: Images, Amp(|u-ν|)

- Multiple reference sources per target
 - Estimate gradients in “phase-correction field”
 - AIPS memo #111 (task ATMCA)

- Finding your own reference sources (e-EVN obs)
 - Sensitive wide-field mapping around your target
 - Go deeper than “parent” surveys (e.g., FIRST, NVSS)
Celestial Reference Frame

- Reference System vs. Reference Frame
 - RS: concepts/procedures to determine coordinates from obs
 - RF: coordinates of sources in catalog; triad of defining axes

- Pre-1997: FK5
 - “Dynamic” definition: moving ecliptic & equinox
 - Rotational terms / accelerations in equations of motions

- ICRS: kinematic \(\rightarrow\) axes fixed wrt extra-galactic sources
 - Independent of solar-system dynamics (incl. precession/nutation)

- ICRF2: most recent realization of the ICRS
 - IERS Tech.Note #35, 2009: 2nd Realization of ICRF by VLBI
 - 295 defining sources (axes constraint); 3414 sources overall
 - Median \(\sigma_{\text{pos}}\)~ 100-175 \(\mu\text{as}\) (floor ~40 \(\mu\text{as}\)); axis stability ~10 \(\mu\text{as}\)
 - More emphasis put on source stability & structure

- Process to create ICRF3 underway
Faint-Source Mapping

- Phase-referencing to establish Dly, Rt, Phs corrections at positions/scan-times of targets too faint to self-cal

 Phase for ev018c.ms (C-band phase-referencing: Ef,Wb,Mc,Sv,Ze)

- Increasing coherent integration time to whole observation
 - Beasley & Conway 1995, *VLBI and the VLBA*, Ch 17, p.327
Differential Astrometry

- Motion of target with respect to a reference source
 - Extragalactic ref.src. → tied to inertial space (FK5 vs. ICRF)
 - Shapiro et al. 1979, *AJ*, 84, 1459 (3C345 & NRAO 512: '71-'74)

- Masers in SFR as tracers of Galactic arms
 - BeSSeL: bessel.vlbi-astrometry.org

- Pulsar astrometry (birthplaces, frame ties, n_e)
 - PSRPI: safe.nrao.edu/vlba/psrpi

- Stellar systems: magnetically active binaries, exo-planets
 - RIPL: astro.berkeley.edu/~gbower/RIPL

- IAU Symp #248: *From mas to μas Astrometry*
Phs-Ref Limitations: Troposphere

- Saastamoinen Zenith Delay [m] \((\text{catmm}.\text{f})\)

 \[
 \text{Dry: } \frac{0.0022768P_{\text{mbar}}}{1 - 0.00266 \cos 2\phi - 0.00028h_{\text{km}}}
 \]

 \[
 \text{Wet: } 0.00277 \left(\frac{1255}{T_{c} + 273.16} + 0.05 \right) \times RH
 \times 6.11 \exp \left(\frac{17.269T_{c}}{T_{c} + 237.3} \right)
 \]

 thus:

 \[
 ZD_{\text{dry}} = ZD_d(P, \phi, h)
 \]

 \[
 ZD_{\text{wet}} = ZD_w(T, RH)
 \]

- Station \(\Delta ZD\) \(\rightarrow\) elevation-dependent \(\Delta \phi\)

 - Dry \(ZD\) \(~7.5\text{ns} \(~37.5\text{ cycles of phase at } \text{C-band})\)

 - Wet \(ZD\) \(~0.3\text{ns} \,(0.1–1\text{ns})\) but high spatial/temporal variability

- Water-vapor radiometers to measure precipitable water along the antenna’s pointing direction
Troposphere Mitigation

- Computing “own” tropo corrections from correlated data
- Scheduling: insert “Geodetic” blocks in schedule
 - sched: GEOSEG as scan-based parameter
 - other control parameters
 - egdelzn.key in examples
- AIPS
 - DELZN & CLCOR(opcode=atmo)
 - AIPS memo #110

- Numerical weather models & ray-tracing
Phs-Ref Limitations: Ionosphere

1 TECU = 1.34/ν[GHz] cycles of φ

TEC color-map scaling:
30 75 135 180 TECU
Phs-Ref Limitations: Ionosphere

Electron Density Profiles at WSRT: Summer/Winter

0200 LT

<table>
<thead>
<tr>
<th>TEC</th>
<th>min</th>
<th>med</th>
<th>max</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.21, 5.37</td>
<td>4.17, 13.63</td>
<td>10.09, 35.02</td>
<td></td>
</tr>
</tbody>
</table>

0800 LT

<table>
<thead>
<tr>
<th>TEC</th>
<th>min</th>
<th>med</th>
<th>max</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.97, 7.93</td>
<td>5.0, 16.35</td>
<td>10.9, 31.64</td>
<td></td>
</tr>
</tbody>
</table>

1400 LT

<table>
<thead>
<tr>
<th>TEC</th>
<th>min</th>
<th>med</th>
<th>max</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.07, 9.23</td>
<td>17.09, 18.17</td>
<td>34.69, 35.21</td>
<td></td>
</tr>
</tbody>
</table>

2000 LT

<table>
<thead>
<tr>
<th>TEC</th>
<th>min</th>
<th>med</th>
<th>max</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.35, 10.59</td>
<td>7.47, 22.90</td>
<td>17.2, 48.21</td>
<td></td>
</tr>
</tbody>
</table>
Ionosphere Mitigation

- Dispersive delay \rightarrow inverse quadratic dependence τ vs. ν
 - Dual-frequency (e.g., 2.3, 8.4 GHz)

- IGS IONEX maps (gridded vTEC)
 igscb.jpl.nasa.gov/components/prods.html
 - 5° long. x 2.5° lat., every 2 hr
 - $h = 450$km // $\sigma \sim 2$-8 TECU
 - Based on ≥ 150 GPS stations
 - Various analysis centers’ solutions

- AIPS: TECOR
 - VLBI science memo #23

- From raw GPS data:

- Incorporation of profile info?
 - Ionosondes, GPS/LEO occultations
Ionosphere: Climatology

The past few solar cycles: solar 10.7cm flux density

Prediction for solar cycle: peak ≤ solar-“medium” still 4+ yr to solar-minimum
Ionosphere: Equations

Collision-free Appleton-Hartree index of refraction through a cold plasma:

\[\mu_p^2 = 1 - \frac{2X(1 - X)}{2(1 - X) - Y^2 \sin^2 \theta \pm \left[Y^4 \sin^4 \theta + 4(1 - X)^2 Y^2 \cos^2 \theta \right]^\frac{1}{2}} \]

where \(\theta \) is the angle between \(\mathbf{B}_0 \) and the direction of propagation, and \(X \) and \(Y \) relate to the plasma & cyclotron frequencies:

\[X \equiv \frac{\nu_p^2}{\nu^2}, \quad \text{with} \quad \nu_p^2 = \frac{e^2}{4\pi^2 \varepsilon_0 m_e} n_e \equiv K_p^2 n_e, \]

\[Y \equiv \frac{\nu_b}{\nu}, \quad \text{with} \quad \nu_b = \frac{e}{2\pi m_e} B \equiv K_b B. \]

Values of these new \(K \)'s are: \(K_p^2 = 80.616 \, \text{m}^3 \, \text{s}^{-2} \) and \(K_b = 2.799 \times 10^{10} \, \text{s}^{-1} \, \text{T}^{-1} \).

Expanding Appleton-Hartree and dropping terms \(< 10^{-12}\) for L-band yields:

\[\mu_p \simeq 1 - \frac{X}{2} - \frac{X^2}{8} \pm \frac{XY \cos \theta}{2} - \frac{XY^2}{2} \left(1 - \frac{\sin^2 \theta}{2} \right) + \frac{X^2 Y \cos \theta}{4}, \]

where the "+" and "−" of the "±" correspond to two propagation modes. Terms of order \(X, X^2, Y, Y^2, Y^3, XY, X^2Y \), and \(XY^2 \) were kept in intermediate steps.

\[\tau_p = \left(\int \mu_p \, dl \right) / c \]

\[\mu_g = d \left(\nu \mu_p \right) / d\nu \]
Ionosphere: References

- Davies, K.E. 1990, *Ionospheric Radio*
 - from a more practical view-point; all frequency ranges
 - ~senior undergrad science in larger context
- Kelly, M.C. 1989, *Earth’s Ionosphere*
 - ~grad science, more detail in transport processes
 - same as above, plus attention to other planets
- Budden, K.G., 1988, *Propagation of Radio Waves*
 - frightening math(s) for people way smarter than I...
Troposphere vs. Ionosphere

- Cross-over frequency below which typical ionospheric delay exceeds typical tropospheric delay (at zenith)
 - Troposphere: ~7.8 ns (at sea level, STP)
 - Ionosphere: \(-1.34 \frac{TEC_{[TECU]}}{v^2_{[GHz]}}\) ns

\[v_{\text{cross-over}} \sim \sqrt{\frac{TEC}{5.82}} \text{ GHz} \]

- can expect different tropo, iono vertical \rightarrow slant mapping functions

- for some representative TECs:

<table>
<thead>
<tr>
<th>TEC [TECU]</th>
<th>Cross-over V [GHz]</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>~1.3</td>
</tr>
<tr>
<td>50</td>
<td>~2.9</td>
</tr>
<tr>
<td>100</td>
<td>~4.1</td>
</tr>
</tbody>
</table>
Wide-field Mapping: FoV limits

- Residual delay, rate \rightarrow slopes in phase vs. freq, time
 - Delay $= \frac{\partial \phi}{\partial \omega}$ i.e., via Fourier transform shift theorem;
 - Rate $= \frac{\partial \phi}{\partial t}$ 1 wrap of ϕ across band $= 1$/BW [s] of delay)
- Delay (& rate) = function of correlated position:
 $$\tau_0 = -[\cos \delta_0 \{b_x \cos(t_{sid} - \alpha_0) - b_y \sin(t_{sid} - \alpha_0)\} + b_z \sin \delta_0] / c$$
- As one moves away from correlation center, can make a Taylor-expansion of delay (& rate):
 $$\tau(\alpha, \delta) = \tau(\alpha_0, \delta_0) + \Delta \alpha \left(\frac{\partial \tau}{\partial \alpha} \right) + \Delta \delta \left(\frac{\partial \tau}{\partial \delta} \right)$$
- \rightarrow leads to residual delays & rates across the field, increasing away from the phase center.
- \rightarrow leads to de-correlations in coherent averaging over frequency (finite BW) and time (finite integrations).
Wide-field Mapping: Scalings

- To maintain ≤10% reduction in response to point-source:

\[FoV_{BW} \lesssim \frac{49''5\ N_{frq}}{B_{1000km} \cdot BW_{SB\text{MHz}}} \]

\[FoV_{time} \lesssim \frac{18''5\ \lambda_{cm}}{B_{1000km} \cdot t_{int}} \]

- Wrobel 1995, in "VLBI & the VLBA", Ch. 21.7.5

- Scaling: BW-smearing: inversely with channel-width
 time-smearing: inversely with \(t_{int} \), obs. Frequency

- Data size would scale as \(N_{frq} \times N_{int} \) (e.g., \(\propto \) area)

- Record for single experiment correlated at JIVE = 5.32 TB
- Expected record for an on-going multi-epoch exp. = 14.71 TB
WFM: Software Correlation

- Software correlators can use almost unlimited N_{freq} & t_{int}
 - PIs can get a much larger single FoV in a huge data-set

- Multiple phase-centers: using the extremely wide FoV correlation “internally”, and steering a delay/rate beam to different positions on the sky to integrate on smaller sub-fields within the “internal” wide field:
 - Look at a set of specific sources in the field (in-beam phs-refs)
 - Chop the full field up into easier-to-eat chunks

- As FoV grows, need looms for primary-beam corrections
 - EVN has stations ranging from 20 to 100 m
Space VLBI: Orbiting Antennas

- (Much) longer baselines, no atmosphere in the way

- HALCA: Feb’97 — Nov’05
 - Orbit: $r = 12k – 27k$ km; $P = 6.3$ hr; $i = 31^\circ$

- RadioAstron: launched 18 July 2011
 - Orbit: $r = 10-70k$ km — 310-390k km; $P \sim 9.5$ d; $i = 51.6^\circ$
 - 329 MHz, 1.6, 5, 22 GHz
 - www.asc.rssi.ru/radioastron

- Model/correlation issues:
 - Satellite position/velocity; proper vs. coordinate time

- Planned future mission: Millimetron (0.02-17 mm; ≥ 2019)
Space VLBI: Solar System Targets

- Model variations
 - Near field / curved wavefront; may bypass some outer planets
 - *e.g.*, Duev et al. 2012, *A&A*, 541, 43
 - Sekido & Fukushima 2006, *J. Geodesy*, 80, 137

- Science applications
 - Planetary probes (atmospheres, mass distribution, solar wind)
 - Huygens (2005 descent onto Titan), Venus/Mars explorers, MEX fly-by of Phobos, BepiColombo (Mercury)
 - Tests of GR (PPN γ, ∂G/∂t, deviations from inverse-square law)
 - IAU Symp #261: *Relativity in Fundamental Astronomy*
 - Frame ties (ecliptic within ICRS)
Future

- Digital back-ends / wider IFs / faster sampling
 - Higher total bit-rates (higher sensitivity)
 - More flexible frequency configurations
 - More linear phase response across base-band channels

- Developments in software correlation
 - More special-purpose correlation modes / features

- More stations: better sensitivity, u-v coverage
 - Additional African VLBI stations for N-S baselines

- Continuing maturation of real-time e-VLBI
 - Better responsiveness (e.g., automatic overrides)
 - Better coordination into multi-{λ} campaigns
Concepts for the VLBI Tutorial

- **Review of VLBI- (EVN-) specific quirks**
 - |B| so long, no truly point-like primary calibrators
 - Each station has independent maser time/ν control; different feeds, IF chains, & back-ends.

- **Processing steps**
 - Data inspection
 - Amplitude calibration (relying on EVN pipeline...)
 - Delay / rate / phase calibration (fringing)
 - Bandpass calibration
 - Imaging / self-cal

- **ParselTongue wiki:**
Pipeline Outputs (downloads)

- Plots up through (rough) images
- Prepared ANTAB file (amplitude calibration input)
- A priori Flagging file(s) (by time-range, by channel)
- AIPS tables
 - CL1 = “unity”, typically 15s sampling
 - SN1 = TY ⊕ GC; CL2 = CL1 ⊗ SN1 (& parallactic angles)
 - FG1 (sums over all input flagging files)
 - SN2 = FG1 ⊕ CL2 ⊕ fring; CL3 = CL2 ⊗ SN2
 - BP1 = computed after CL3 ⊕ FG1
- Pipeline-calibrated UVFITS (per source)
Data Familiarization

- FITLD — to load data
- LISTR — scan-based summary of observations
- PRTAB, PRTAN (TBOUT)
 - Looking into contents of “tables”
- POSSM, VPLOT, UVPLT
 - Plots: vs. frequency, vs. time, u-v based
- SNPLT
 - Plot solution/calibration tables (various y-axes)
Amplitude Calibration (I)

- **VLBI:** no truly point-like primary calibrator
 - Structure- and/or time-variability at smallest scales
- Stations measure power levels on/off load
 - Convertible to T_{sys} [K] via calibrated loads
- Sensitivities, gain curves measured at station
- **SEFD** = $T_{sys}(t) / \{DPFU \times g(z)\}$
 - $\sqrt{SEFD_1 \times SEFD_2}$ as basis to convert from unitless correlation coefficients to flux densities [Jy]
- EVN Pipeline provides JIVE-processed TY table
Amplitude Calibration (II)

- UVPLT: plot Amp(|uv|)
 - Calibrators with simple structure: smooth drop-off e.g., $A(\rho) \propto J_1(\pi a \rho)$ for a uniform disk, diameter=a

- Poorly calibrated stations appear discrepant

- Self-calibration iterations can help bring things into alignment
Delay/Rate Calibration

- Each antenna has its own “clock” (H-maser)
- Each antenna has its own IF-chains, BBCs
 - Differing delays (& rates?) per station/pol/subband
- Delay $\rightarrow \frac{\partial \varphi}{\partial \omega}$ (phase-slope across band)
- Rate $\rightarrow \frac{\partial \varphi}{\partial t}$ (phase-slope vs. time)
- Point-source = flat $\varphi(\omega, t)$
 - Regular variations: clocks, source-structure, etc.
 - Irregular variations: propagation, instrumental noise
 - φ_{str} doesn’t necessarily close (not station-based)
Fringe-fitting

- Over short intervals (**SOLINT**), estimate delay and rate at each station (wrt reference sta.)
 - above = “global fringe-fit” (cf. “baseline fringe-fit”)

- “Goldilocks” problem for setting SOLINT:
 - too short: low SNR
 - too long: > atmospheric coherence time \[= f(\omega) \]

- After fringing, phases should be flat in the individual subbands, and subbands aligned

- **BPASS**: solve for station bandpass (amp/phase)
 - removes phase-curvature across individual subbands
VLBI (EVN) obs:
What you may have thought before ERIS: artifacts from the dim mists of a Jungian collective unconscious?
More detailed Monte Carlo simulations reveal an altogether different post-ERIS paradigm: