

Florian Rodler (ESO)

The first exoplanet was discovered in 1995.

Florian Rodler - ESO La Silla Observing School

The first exoplanet was discovered in 1995.

Florian Rodler - ESO La Silla Observing School

First alleged exoplanets were reported in the 1940s ...

Name	Period	a	e	M_C	$a'(M_A + M_C)/M_C$ (astr. units)	Refer- ence
ζAqr	25 ^y	.080	.0	.60	13	5
μ Dra	3.2	.026	·4	.6	2.8	6
ξ Boo	2.2	.020	.0	I	1.5	7
61 Cyg	4.9	.020	.7	.016	2.4	8;9

(Strand, 1944, AJ, 51, 12)

The observational concepts were laid out that ~40 years later led to exoplanet discoveries ...

We can write Kepler's third law in the form $\underline{V}^3 \sim \frac{1}{P}$. Since the orbital velocity of the Earth is 30 km/sec, our hypothetical planet would have a velocity of roughly 200 km/sec. If the mass of this planet were equal to that of Jupiter, it would cause the observed radial velocity of the parent star to oscillate with a range of \pm 0.2 km/sec—a quantity that might be just detectable with the most powerful Coudé spectrographs in exist-

There would, of course, also be eclipses. Assuming that the mean density of the planet is five times that of the star (which may be optimistic for such a large planet) the projected eclipsed area is about 1/50th of that of the star, and the loss of light in stellar magnitudes is about 0.02. This,

(Struwe, 1952, Obs, 72, 199)

Early claims of exoplanet discoveries (with astrometry):

(van de Kamp, 1982, Vistas in Ast., 26, 141)

Florian Rodler - ESO La Silla Observing School

1988: γ Cep b Campbell, Walker & Yang (ApJ 331, 902)

Radial velocities

\Rightarrow no firm discovery claim

"Probable third-body variation of 25 m s⁻¹ amplitude, 2.7 yr period"

 \Rightarrow in 2003 confirmed by Hatzes et al. (ApJ 599, 1383)

1989: HD114762b Latham et al. (Nature 339, 38)

Radial velocities ⇒ no firm discovery claim

"The unseen companion of HD114762 - A probable brown dwarf" ... $P = 84 \text{ d}, m \ge 11 M_{Jupiter}$

1991: PSR 1829-10 Lyne (Nature 352, 537)

Pulsar Timing: Radio pulses arrive earlier and later at Earth

Problem: $P = \frac{1}{2} yr \implies$ Error in the correction of the eccentricity of the Earth's movement.

1992: PSR 1257+12 Wolszczan & Frail (Nature 355, 145)

Pulsar timing \Rightarrow 3 M_{Earth} planets orbiting a pulsar

1995: 51 Peg b Mayor & Queloz (Nature 378, 355)

RVs "A Jupiter-mass companion to a solar-type star" P = 4.23 d, a = 0.05 AU (!), $m \ge 0.47 M_{Jupiter}$

1995: 51 Peg b Mayor & Queloz (Nature 378, 355)

RVs

"A Jupiter-mass companion to a solar-type star" P = 4.23 d, a = 0.05 AU (!), $m \ge 0.47 M_{Jupiter}$

51 Peg b, a "hot Jupiter"

Earth

The first exoplanet around a solar-type star was discovered in 1995.

Florian Rodler - ESO La Silla Observing School

- Radial Velocities
- Transits
- Direct Imaging
- Astrometry
- Microlensing
- Pulsar Timing
- Transit Timing
- Interferometry

Radial Velocity technique:

measure stellar absorption lines!

They shift as the star wobbles due to gravitational pull of the unseen planet

 $v_{\rm rad} = c \Delta \lambda / \lambda$

Florian Rodler - ESO La Silla Observing School

What can we measure / derive?

- orbital period P
- RV semi-amplitude of star (K_{\star})
- shape of the RV curve \Rightarrow eccentricity e

Florian Rodler - ESO La Silla Observing School

What can we measure / derive?

- orbital period P
- RV semi-amplitude of star (K_{\star})
- shape of the RV curve ⇒ eccentricity *e*

⇒ semi-major axis *a*

Kepler 3:
$$a^3 = (a_* + a_p)^3 = \frac{G}{4\pi^2}(m_* + m_p)P^2$$

⇒ estimate on the planetary mass (minimum mass): *m*_p sin *i*

RV semi – amplitude
$$K_*$$
:

$$K_* \sqrt{1 - e^2} = \left[\frac{2\pi \ G}{P}\right]^{1/3} \frac{m_p \sin i}{(m_* + m_p)^{2/3}}$$

<u>Trick</u>: $m_p \ll m_{\bigstar} \Rightarrow (m_p + m_{\bigstar}) = m_{\bigstar}$

i = 90° - "edge on"; companion has minimum mass

i = 25° - "face on"

we only measure the velocity component towards Earth!

Detection Methods: Transits

Detection Methods: Transits

What can we measure/derive?

1) planet radius *R*_p.

(transit depth d corresponds to area ratio star / planet)

2) **orbital inclination** (estimate, *i* ~ 90°) *(the orbit of transiting planets is "edge on")*

- 3) mid-transit time T_0
- 4) orbital period *P*

RV + transits combined ...

1) exact orbital inclination i

$$a\cos i = \sqrt{(R_{\star} + R_{\rm p})^2 - l^2}$$

$$l = a \pi d_{\text{transit}}/P$$

Florian Rodler - ESO La Silla Observing School

RV + transits combined ...

1) exact orbital inclination i

2) exact mass m_p (solve for $m_p \sin i$)

3) mean **density of planet** ~ m_p / R_p^3

Florian Rodler - ESO La Silla Observing School

2000: HD 209458 The first transiting planet

- Charbonneau et al. (ApJ 529, L45) Henry et al. (ApJ 529, L41)
- $\Rightarrow i = 86.9^{\circ}$
- $\Rightarrow m_{\rm p} = 0.69 \ {\rm M}_{\rm jup}$
- $\Rightarrow R_{\rm p} = 1.4 \ {\rm R}_{\rm jup}$

Detection Methods: Transits

Transit surveys to detect transiting planets

... from the ground and from space

Kepler satellite mission

2010 - 2015 (2018)

- 95cm aperture; monitored the brightness of ~150 000 stars
- found over 2600 planets!

Stars with planets are the rule, not the exception!

TESS mission

since 2018

- all-sky survey
- short-period planets around brighter stars
 (atmospheres!)

2002: first exoplanet atmosphere detected

Transmission spectroscopy of HD209458b

Charbonneau et al. (ApJ, 568, 377)

For transmission spectroscopy, we only care about the area ratio **transparent planet atmosphere** / stellar disk

λ

 $R_{\rm D}$

For transmission spectroscopy, we only care about the area ratio **transparent planet atmosphere** / stellar disk

λ

 $R_{\rm D}$

For transmission spectroscopy, we only care about the area ratio **transparent planet atmosphere** / stellar disk

λ

 $R_{\rm D}$

Instruments at ESO for RV observations and atmosphere studies:

- UVES (VLT, since 2000)
- FORS2 (VLT, since 2000) spectro-photometry
- HARPS (La Silla, since 2003)
- ESPRESSO (VLT, since 2018) ---
- NIRPS (La Silla, 2021)
- CRIRES (VLT, 2021)

Questions?

Matias Jones: detecting the TESS planet HD2685b

Florian Rodler - ESO La Silla Observing School

Elyar Sedaghati: transmission spectrum of WASP19b

Science Highlights at ESO

Florian Rodler: CO in day-side spectrum of Ups And b

Direct Imaging

Two challenges:

- planets appear close to star
- planets are *relatively* small / faint

(flux ratio Jupiter/Sun ~ 10^{-9} in the vis

Detection Methods: Direct Imaging

Stars are a billion

times brighter...

Detection Methods: Direct Imaging

...than the planet

...hidden in the glare.

Challenge: angular resolution on sky

- planet in 10 AU orbit around star 10 pc away from us: separation on sky = 1".
- at 100 pc distance: separation on sky = **0.1**".

Diffraction limits angular resolution of telescope: $r["] = 1.22 \lambda/D$ 206,265

That's the smallest possible value to separate two sources with a telescope with an aperture *D*

Example: VLT(8.2m) at λ=1µm: **0.031**"

However, there is a *little* problem ...

Atmospheric turbulence?!

You don't like it?

- go to space, or
- do lucky imaging, or
- do some magic ...

Adaptive Optics (AO):

- correct distortions in wavefront

- use a deformable mirror (at 1 kHz)

AO allow to attain angular resolutions of ~0.1" at the VLT!

Enhancing the contrast ...

- what targets? young planets are hot: they shine bright in the NIR (~10⁻⁴)

Enhancing the contrast ...

- what targets? **young planets** are hot: they shine bright in the NIR (~10⁻⁴)
- coronagraph: a mask that blocks most of the star light (~99%)

Enhancing the contrast ...

- what targets? **young planets** are hot: they shine bright in the NIR (~10⁻⁴)
- coronagraph: a mask that blocks most of the star light (~99%)
- angular differential imaging (ADI) to identify instrumental noise.

Which one of these dots is a planet?

 - angular differential imaging (ADI) to identify instrumental noise: due to telescope mounting, sky field rotates over time on detector, while instrumental noise ("speckles") is static.

2M1207

- 2004: the first directly imaged exoplanet a ~ 40 AU (0.78" on sky) $m_p = 3-10 m_{Jup}$ age < 10 Myr instrument: VLT/NACO

(Chauvin+2004, A&A)

Instruments at ESO for direct imaging with extreme AO:

 SPHERE (since 2015) in VIS and NIR; Allows also low-res spectroscopy.

Julien Milli, Zahed Wahhaj: detecting a brown dwarf in a debris disk

Bin Yang: detecting a moon of an asteroid

(Yang+2016)

Florian Rodler - ESO La Silla Observing School

Summary

~4200 exoplanets confirmed:

Florian Rodler - ESO La Silla Observing School

~4200 exoplanets confirmed:

Florian Rodler - ESO La Silla Observing School