HARPS The Exoplanet Finder on La Silla

Florian Rodler (ESO)

Introduction

HARPS = High Accuracy Radial velocity Planet Searcher

on the La Silla 3.6m telescope

Introduction

Measure: stellar absorption lines!

They shift in the line of sight as the star wobbles due to gravitational pull of the unseen planet

Introduction

Finding exoplanets with the Radial Velocity technique

Doppler effect: $v_{rad} = c \Delta \lambda / \lambda$

Zoom in ...

Try to detect Jupiter around the Sun:

i.e. an object of 318 Earth masses with an orbital period of 11.9 yr and causing a stellar RV variation of ± 12.4 m/s (a shift in λ of 0.000023 nm at 550 nm)

Requirements for such a spectrograph:

- very high spectral resolving power $(R = \lambda/\Delta\lambda > 50\ 000)$
- very high instrumental stability over many years
 (error in RV ~ 1 m/s ... ~1/100 of a pixel ... over 10 years)

Requirements for such a spectrograph:

- very high spectral resolving power $(R = \lambda/\Delta\lambda > 50\ 000)$
- very high instrumental stability over many years
 (error in RV ~ 1 m/s ... ~1/100 of a pixel ... over 10 years)

Always know your instrument! Think of possible error sources!

(Murphy's law applies: your nice planet signal just might turn out to be instrumental variations)

Requirements for such a spectrograph:

- very high spectral resolving power $(R = \lambda/\Delta\lambda > 50\ 000)$
- very high instrumental stability over many years
 (error in RV ~ 1 m/s ... ~1/100 of a pixel ... over 10 years)

How to achieve such a stability? What possible error sources do you see?

Very high instrumental stability:

- simultaneous wavelength calibration
- no moving parts in the spectrograph, fixed spectral format, spectrograph not moving
- in vacuum (P and T stabilized)

HARPS

- build by a consortium led by Geneva Observatory
- commissioned in 2003
- wavelength range: 381 691 nm; fixed spectral format, 72 orders, simultaneous wave calibration

- **spectral resolving power: 115,000** in HAM mode 80,000 in EGGS mode
- Spectrograph in Coudé-room, connected via fibers to 3.6m telescope
- Pressure stability: <10⁻³ mbar
- Temperature stability: 1 mK / day

HARPS

HARPS

Daily Calibrations (afternoon before the observations!)

Two long-term absolute wavelength references

(only used during afternoon to preserve lifetime):

- ThAr lamp 1

Daily Calibrations (afternoon before the observations!)

Two **long-term absolute wavelength references** (only used during afternoon to preserve lifetime):

- ThAr lamp 1
- Laser Frequency comb

They are used to calibrate the nightly simultaneous wavelength reference:

- ThAr lamp 2
- **Fabry-Perot** (has a drift of <0.1 m/s per night)

Observing modes:

HAM: High accuracy mode, R~115,000 RV precision 1 m/s, 1" fibers A+B For faint targets (V>12) no simultaneous wave calib!

EGGS: High efficiency mode (faint targets), R~80,000 RV precision 3 m/s, 1.4" fibers A+B

Polarimetry: 1" fibers A+B

Observing with HARPS

Example: HAM mode, 240 sec, 1" seeing, X=1.1:

Observing with HARPS

HARPS Pipeline (DRS)

- standard steps: bias, flat-field, cosmic-rays correction
- extraction of spectral orders from frame + wavelength solution
- cross-correlation with suitable reference mask (G2, K5, M2) to calculate radial velocity of target. Barycentric correction.
- Bi-sector analysis of stellar line-profile (star spots?)

- cross-correlation with suitable reference mask (G2, K5, M2) to calculate radial velocity of target.

Result: cross-correlation function (CCF):

Florian Rodler - ESO La Silla Observing School

Raw science frame:

/data/raw/<date>/HARPS*.fits

Reduced data products:

/data/reduced/<date>/

HARPS*_ccf_G2_A.fits *CCF* HARPS*_ccf_G2_A.tbl *extracted RV per spectral order (72 orders)* HARPS*_e2ds_A.fits *extracted spectrum, per order, fiber A* HARPS*_s1d_A.fits *extracted and merged spectrum, fiber A* HARPS*_bis_G2_A.fits *bi-sector analysis* HARPS*_INT_GUIDE.fits ... *integrated image of the guide camera*

OUTLOOK: HARPS+NIRPS

λ=381-691 nm R~115,000, 1 m/s 80,000 **λ=970-1810 nm** R~100,000, 1 m/s 80,000

simultaneous operations (2021)!