

UVES optical design

J. Kosmalski

(with valuable inputs from B. Delabre)

21st October 2020

How to achieve very high spectral resolution without using large detectors, ultra large, ultra fast and impossible to design cameras?

NB: This can be done also with many smaller telescope far from the pupil (strong vignetting!)

The Classical Approach for High resolution

KECK
High Resolution Spectrograph

- 1 Collimator followed by the Echelle+Cross disp.
- Large Schmidt camera 44inch
- Strong anamorphose and vignetting

-Proposed by **A. Baranne** in early 70's

Use a Echelle Type of grating in Littrow with the collimator used in double path

A slit with overlapping diffraction orders is then created Another transfert Collimator and Cross-disperser are needed

- Camera pupil size is almost a free parameter
- But slit length is limited by the orders separation

-A. Baranne applied his concept using a Schmidt Collimator in double path in CASSHAWEC

This was not a big success as the Schmidt corrector turned out to be a ghost images generator

EMMI was the first ESO instrument using that principle

UVES in 1 Shot

Preoptics:

- -1 Optical Derotator
- -ADC+filters
- -2 Achromatic at F/10
- -Selection mirrors

Other features:

- -Slit Viewers
- -Adjustable Slits (Dekker)

Red ARM:

6 lenses (but 2 doublets) EFL 500mm 200mm pupil F/2.5 Achromatic Camera R4 Echelle 0.42-1 micron Covered using 2 Ex. CrossDisp

Usable FoV 12deg

(4kx4k)

BLUE ARM:

7 lenses EFL 360mm 200mm pupil F/1.8 Achromatic Camera R4 Echelle 0.3-0.5 micron Covered using 2 Ex. CrossDisp Usable FoV 7.5deg (2k*2k equ.)

UVES Secret 1

Main and Transfer Collimators combination!

- 1)Perfect compensation of vertical coma and Astig of OPA1 in double path by OPA2.
- 2)Perfect compensation of horizontal coma between OAP1 and OAP2
- → Unbeatable Image Quality performances
- → No Ghost
- →Only problem is Field Curvature (Cylindrical Cryostat window to correct this)

UVES Secret 2

Vignetting of the Cameras:

- Camera far from the pupil
- Glass blanks larger than 200mm not existing

Up to 25% vignetting

Making a clever use of this vignetting allows very good images with only spherical and much thinner lenses

RMS spot size

1 pix with Vignetting vs 6pix without!

urface IMA: CodeV S29

Spot Diagram

, 10/19/2020 Units are jum. Airy Radius: 0.9051 µm. Legend items refer to Waveleng Field : 47.22 RMS radius : 47.22

After UVES

COPIED Many times with variations of collimator:

FEROS, HARPS, ESPADON, SPIROU, FOCES... the list is long

After UVES

STELES

Spherical Transfert Collimator with Camera Compensation

ESPRESSO

Spherical Trans Coll+ field flattener Pupil slicing

Huge benefit of fixed format detector for the camera designs

Blue Arm upgrade Ideas

- To double the camera FoV to cover the full wavelength range in one shot (4k by 4k)
- To maintain a reasonable size for the camera, this requires to reduce the size of the white pupil.
- -Use a transmission grating (ion-etched) to have the camera closer to the pupil
 - -By modifying the transfert collimator, change the pupil size and position
- Combining all this will also have an improvement on the overall throughput (grating efficiency, less vignetting)

How?

Convert UVES transfer collimator into a ESPRESSO type transfert collimator

UVESPRESSO?

Preliminary design

Trans Coll Focal: 1500mm

White Pupil: 150mm*200mm

Grating: 200mm x 200mm 1080 lines per mm

Camera Focal: 270mm

Camera

Focal Length 280mm, 5Lenses 3asph.

F/#=1.8

No correction of axial color

Angular FoV 7.8 deg by 12.4deg

Rms Spot diagram

Spectral Format

Echellogram from diffraction order 94 to 155. (300 to 500nm) Minimal order separation (155-154) = 560micron center to center Max slit length about 7.7 arcsec (no gap)

Throughput improvement

- 10 to 15% more efficient grating
- 1 Lens Less : 2%
- No Vignetting: up to 25% affecting extreme blue and red
- New Blue Detector ???
 - → 50% relative increase (Not everywhere)

Thanks for your attention!

UVES Blue Arm

UVES upgrade