RTC Toolkit
Overview and Status

Bogdan Jeram (bjeram@eso.org) on behalf of RTC toolkit development team
AO RTC Standard Architecture

- **HRTC:**
 - AO correction
 - performance-critical: several 100 Hz / kHz

- **SRTC:**
 - Receiving telemetry data
 - Optimization
 - (re)configuring HRTC by sending cfg to
 - Commanding and Monitoring HRTC
 - Interacts with the rest of the instrument (ICS)
RTC Toolkit

- SW building blocks to build SRTC and interface with HRTC and with the rest of the instrument:
 - Libraries
 - Executables
 - Tools
 - SW interfaces

- Guidelines: SW, HW, network, and set-up/tuning

- Simulators: WFS, DM-echo and CCS deterministic
Highlights

- Performance oriented

- Scalable:
 - # of servers in SRTC
 - amount of data transfer from/to HRTC
 - Calculation needs

- Customizable/extendable

- Flexible:
 - CPU computation: C++ / Python
 - GPU computation using CUDA

- Platform: Linux

- Programming language: C++ / Python (limited)
Main Functionality

• Component framework – processes/service
• Configuration: persistent and run-time
• Telemetry propagation
• Data Task infrastructure for number-crunching (processing) data
• Recording: raw and preprocessed telemetry
• Visualization
• Simulators
Component Framework
Commands & Events

- Commands: Request/reply based on ELT CII MAL using 0mq + Protobuf
- State Machine (SM) engine based on RAD
- Business Logic (BL) – actual implementation
- Standardized Command interfaces. E.g:
 - `Init->Enable->Run`
 - `Init->Enable->Run->CloseLoop`
- Customizable Interface + SM
- State events: CII MAL Pub/Sub using DDS
Services

- Service Discovery
- Logging
- Configuration: RTR/PSR
- Event Channel: application-specific events
- Online Database (OLDB): monitoring info
- Alerts
- Metrics/Performance counters
Component customization

• Configuration:
 • just configuration needed.
 • E.g. Telemetry Republisher

• Extension (optional):
 • provide implementation class.
 • E.g. Telemetry Subscriber

• Composition:
 • put provided parts together.
 • E.g. Data Task, Telemetry Recorder
Configuration
Configuration architecture

- **Persistent Configuration Repository (PSR):**
 - on disk or central
 - support for deployment-sets and modes

- **Runtime Configuration Repository (RTR):**
 - in memory => fast access
 - Distributed
 - populated from PSR
 - write back

- Supported types:
 - types: bool/(u)int(32/64)/float/double/string/…
 - scalars/vectors/matrices
Telemetry
Telemetry Republisher

- MUDPI to DDS (FastDDS)
- Agnostic topic payload => no recompiling needed
- Data Wrangling (endianness, padding, …) optional
- Flexible: 1..* instances, each handling 1..* topics, receiving at 1..* NICs
• DDS to SHM ring buffer

• Data Blending (combine several topics into one big super-topic)

• One instance per SHM super-topic and server

• SHM ring buffer consumers: Data Task, Recorders, DDT, …
Telemetry Data consumers
Data Task

- **Input:**
 - Telemetry data from SHM
 - Datapoints from Run-Time Repository (RTR)
- **Computing (Processing):**
 - CPU/GPU
 - C++/Python
- **Output:**
 - Run-Time Repository (RTR)
 - OLDB
 - Events
Recorders

- Telemetry Recorder:
 - Input: Telemetry/Events/OLDB/RTR
 - Output: FITS files
- Meta-data collector:
 - Input: Events/OLDB/RTR
 - Output: FITS files with Exposure Metadata
Raw Recorder and Simulators
Raw recorder

- Captures Pixel data in RTMS/MUDPI format
- Extracts and writes to FITS
Simulators

- WFS: generate or read from FITS file RTMS/MUDPI
- DM Echo: commands’ echo from DM
Deployment and supervision
Deployment

Deployment Daemon:

• Uses Nomad/Consul to deploy components and services

• Provides command interface to
 • start/stop all components of a selected deployment set
 • start/stop individual components
Supervision

• RTC Supervisor: supervision/orchestration of whole SRTC:
 • populate and update run-time configuration
 • walk components through basic life-cycle
 • monitor individual components
 • estimate overall status of entire RTC

• HRTC Supervisor:
 • command HRTC functions & loops
 • configure HRTC functions & loops
 • monitor HRTC functions & loops
Visualization
GUls

- Control and Monitoring Tool
 - Un/Deploy the system
 - Steer RTC components and observe states and other monitoring information
- Configuration Tool:
 - Inspect and modify PSR and RTR configuration
- Widgets:
 - to create application-specific GUI
- Data Display Tool (DDT):
 - pixel data
 - telemetry data
Project Status
Status

• Yearly releases

• Released:
 • Alpha (beginning 2021)
 • v1.0 (end 2021)
 • v2.0 (mid 2022)
 • v3.0 (mid 2023)

• Working on v4.0
Users (so far)

- ELT WFRTC

- ELT instruments:
 - 1st generation: MICADO, METIS, HARMONI, MORFEO
 - 2nd generation: ANDES

- VLT instrument: MAVIS
Thank you!

RTC toolkit development team