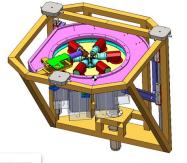
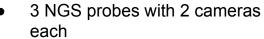


MORFEO Real Time Computer

Italo Foppiani on behalf of the whole team



MORFEO



- 6 LGS probes
- 1100×1100 px images
- 68×68 sub-apertures
- 500 fps

- Low Order WFS:
 - 256×256 px images
 - 2x2 sub-apertures
 - o up to 1000 fps
- Telescope M4 DM:
 - 2.4m flat
 - 5300 actuators

- 240×240 px images
- 10x10 sub-apertures
- o 0.1 -100 fps

- 0.9m diameter convex spherical
- 1000 actuators
- Post focal DMs:
 - 1.2m diameter concave spherical
 - 1150 actuators

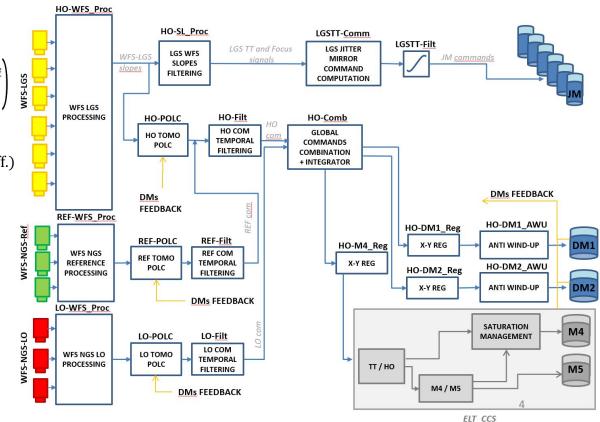
High level control scheme: HRTC

$$e^{j} = PR \ s^{j} + \left(PR \ ID \ \sum_{i=0}^{m} p^{i} c^{j-i} - \sum_{i=0}^{m} p^{i} c^{j-i}\right) \frac{g^{j}}{g^{j}}$$

s measured slope

e error term DM space

PR=P#R Projector # Reconstructor (8k × 42k coeff.)


ID DM interaction matrix

c DM shape

p weighting coefficients

Computational complexities:

- 672 MFLOP for $PR s^{j}$
- 128 MFLOP for PR ID $\sum_{i=0}^{l-1} \alpha^i c^{j-(d+i)}$

High level control scheme: SRTC

PR update

$$R = C A^{T} \left[\left(A C A^{T} + CN \right) \right]^{-1}$$

$$A = IP ML^{GS}$$

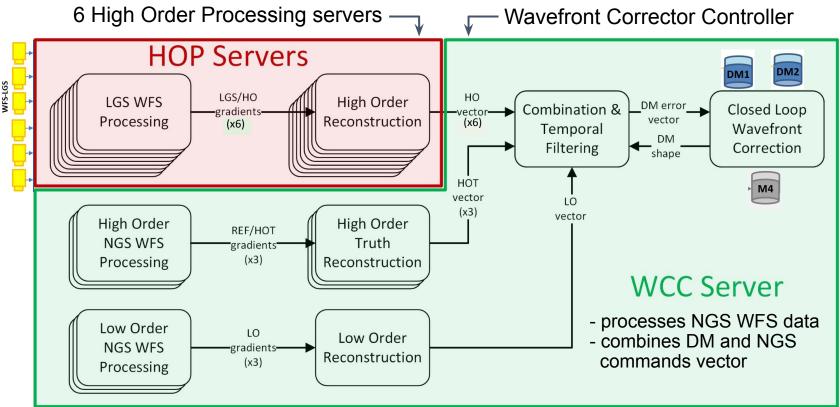
$$P = \left[\frac{\sum_{i=1}^{N_{-}Opt} \left[\left(MD^{Opt_{i}} \right)^{T} MD^{Opt_{i}} \right]}{N_{-}Opt} \right]^{+} \left[\frac{\sum_{i=1}^{N_{-}Opt_{x}} \left(MD^{Opt_{i}} \right)^{T} ML^{Opt_{i}}}{N_{-}Opt} \right]$$

IP C, CN ML^{GS} MD^{Opt} pupil interaction matrix
Atm Turbulence covariance
WFS noise covariance
Atm layers projections along GS
DM projections along optimization

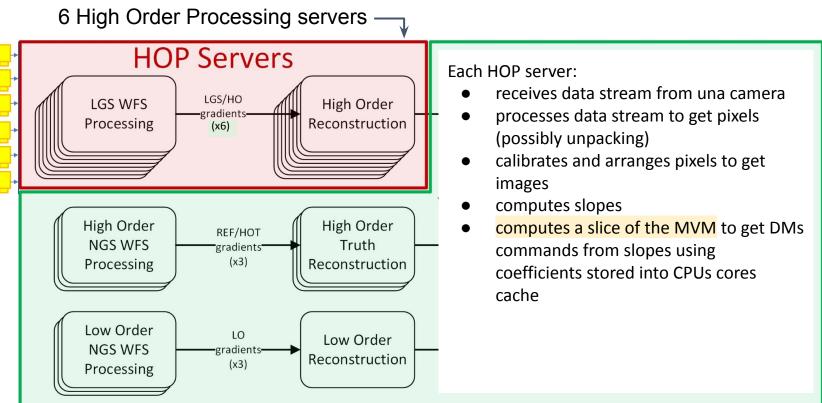
- Computational complexity: ~700 TFLOP
- Minimum updating period: 6 min
- 40 data tasks at least
- telemetry storage

Telemetry Requirements

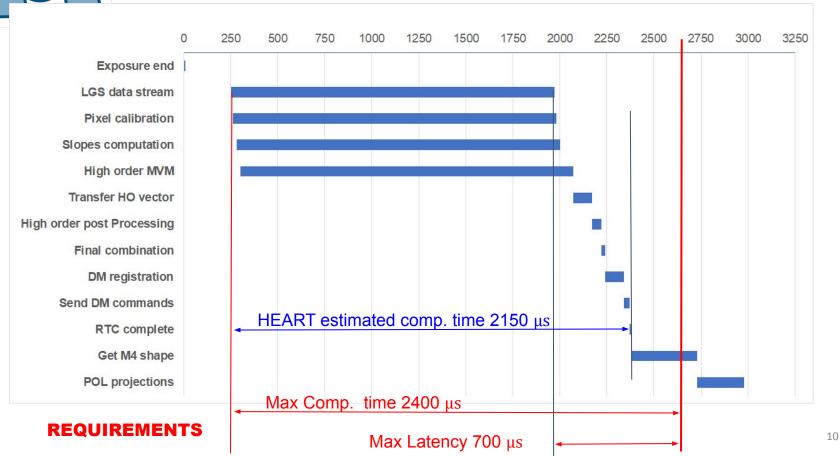
	Number of elements	Number of channels	Data Type [bit]	Frame rate [Hz]	Bandwidth per channel[Gbit/s]	Total Bandwidth [Gbit/s]
LgsPixel	1210000	6	16	500	9,680	58,080
NgsLoPixel	62500	3	16	1000	1,000	3,000
NgsRefPixel	57600	3	16	100	0,092	0,276
LgsSlopes	7000	6	32	500	0,112	0,672
NgsLoSlopes	8	3	32	1000	0,000	0,001
NgsRefSlopes	200	3	32	100	0,001	0,002
LgsIntensities	3500	6	32	500	0,056	0,336
NgsLoIntensities	4	3	32	1000	0,000	0,000
NgsRefIntensities	100	3	32	100	0,000	0,001
PFDM1 sent/applied Commands	1000	2	32	1000	0,032	0,064
PFDM2 sent/applied Commands	1150	2	32	1000	0,037	0,074
M4 Commands	5300	2	32	1000	0,170	0,339
JM Commands	2	6	32	500	0,000	0,000
LgsSlopes Disturbance	7000	6	32	500	0,112	0,672
PFDM1 Commands Disturbance	1000	1	32	1000	0,032	0,032
PFDM2 Commands Disturbance	1150	1	32	1000	0,037	0,037
M4 Commands Disturbance	5300	1	32	1000	0,170	0,170
JM Commands Disturbance	2	6	32	500	0,000	0,000


MORFEO HRTC based on HEART

- Herzberg Extensible Adaptive optics Real-time Toolkit (HEART) has been shown in the previous presentations (by Malcom, Jennifer ,Ed) about CPU based systems:
 - Key features:
 - modular structure of generalized control code and utilities easily configurable
 - distributed architecture (internal UPD/IP real-time communication)
 - CPU-based architecture for off-the-shelf hardware
 - Implemented in C for Linux with real-time patch
- MORFEO RTC feasibility/preliminary study based on HEART was carried out during phase B.
- NRC Herzberg Astronomy and Astrophysics institute is joining the MORFEO consortium as responsible of final design and build of the HRTC


One server for each WFS

MORFEO HRTC based on HEART



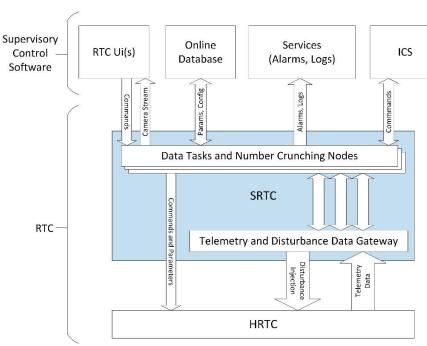
MORFEO HRTC based on HEART

HRTC Timing

MORFEO SRTC

Soft-RTC subsystem main functionalities

- interface towards the Instrument Control System for supervisory and monitoring purposes
- coordinates the RTC in response to commands (setup AO modes, open/close loops, ...)
- carries out AO related co-processing (such as loops optimisations, calibrations, measurements, data recording, ...)



MORFEO SRTC

The Morfeo SRTC follows the ELT RTC reference architecture and is based on the ESO RTC Toolkit.

Its main components are:

- Supervisor node
- Telemetry Gateway
- Computing nodes: to perform the required co-processing requirements
 - Number cruncher
 - Pixel processor
 - Storage node
 - Atmospheric parameters estimation

MORFEO SRTC Co-processing

Main computational functionalities **SRTC Nodes** Control matrices updates (PR) Number cruncher Mis-registration Pixel maps Pixel processor (sub-ap. weights, dark, background, ...) Atmospheric parameters estimation **–** ► • Auxiliar node

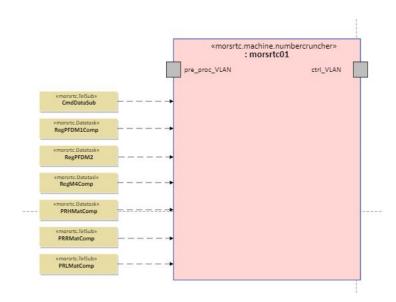
Telemetry and metadata recording

Storage node

MORFEO SRTC Co-processing

Total of about 40 datatasks distributed among 4 computing nodes optimized for computing power or connectivity or storage

The telemetry gateway will be deployed in a ESO standard IT server in accordance with architecture requirements and preliminary benchmarks

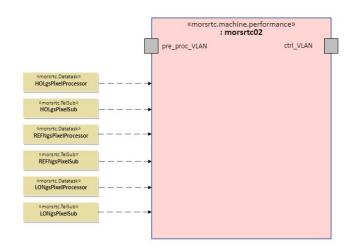


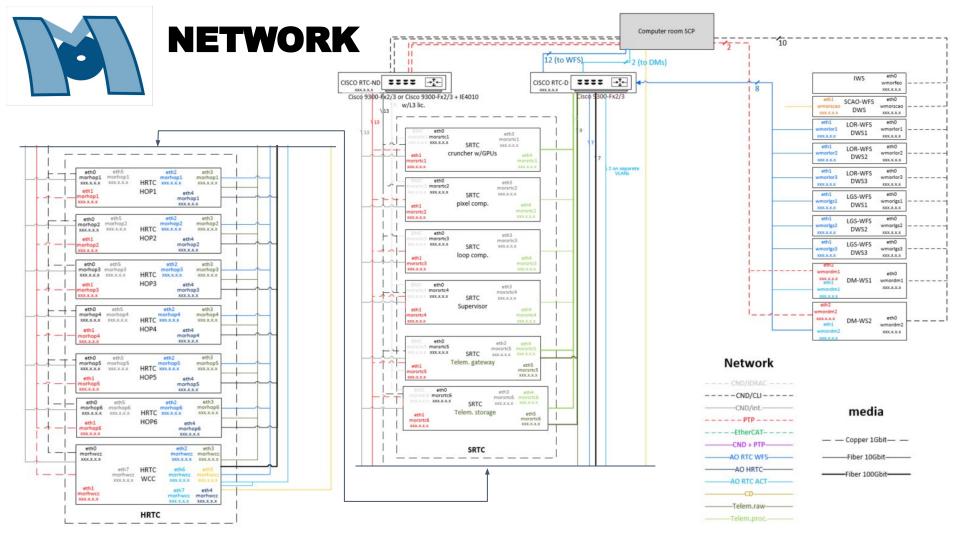
Number cruncher node

- High performance node w/GPU
- Computes:
 - PR updates
 - DMs mis-registrations

Computation requirements

- PR update for LGS (the most demanding one) requires ~700TFLOP.
- Benchmarks show that a CPU system needs several minutes for this computation.
- A GPU offload foreseen for these (mostly algebraic) computations to increase timing margins.




Pixel processor node

- High performance CPU node
- Computes Pixel based computations
 (e.g. background map optimization, dark map optimization, threshold map optimization, slope offset optimization, ...)
- Computations I/O bound

Computation requirements

	#streams	#pixels	(max.) framerate [Hz]	(min.) sub- sampling	operations per pixel (estimate)	total number of operations per second [GFLOP]
LGS	6	1210000	500	10	10	3.63
LO	3	62500	1000	10	10	0.19
Ref	3	57600	100	10	10	0.02

