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State-of-the-art data acquisition methods

@ Considering latency from packet reception at the NIC/FPGA
and availability in GPU memory

@ Interesting metric in the case of pipelining

Method Latency (us) ptp (us)
FPGA GPUDirect (Perret et al. 2016) 5.24 2
DPDK + cudaMemcpy 22.44 16

Very good solution based on FPGA, but can we achieve the
same on COTS hardware ?

@ Use of Smart NIC
@ Simpler system
@ Different maintenance plan
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@ Open-source userspace networking library
@ Less overhead than the Linux networking stack
@ Access point for advanced features of Smart NICs
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GPUDirect RDMA

@ DMA between a GPU and a third party device over PCle
— Less transfers, less overhead

@ Implemented in DPDK for Nvidia Ethernet NICs
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gpudev

@ DPDK module dedicated to GPU control

@ Abstractions (malloc, memset, ...)

o Ultilities (mapped flag, communication list)
@ Framework guiding to best performance

o Persistent kernels

e Data locality
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Final design overview

@ Semi-persistent kernel: launched for each image frame

RTMS packets
optional packet fitering
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Final design overview

Feature set:

@ Support for multiple WFS — scalability for other instruments,
such as MAVIS
@ One CUDA block per WFS — minimal GPU usage
e Possibility to overlap acquisition with computations
@ Partial support (as of today) of the RTMS protocol

v Packet Type, Endianness, Payload Size, Payload Tag,
Padding, Incomplete frame management, WFSCs ALICE
and LISA

X Stream Error, Version, IsSimSource, Extended Info, WFSC
FREDA

@ Ongoing validation with the ESO WFS Simulator
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Adaptive Optics

Benchmark over ALICE WFSC frame transmission
Point-to-point communication over a 40 GbE link
Nvidia Connectx-5 NIC + A100 GPU

Custom sender, written in pure DPDK (no GPU)

Latency KDE (packet reception — end of packet processing)
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Adaptive Optics

Method Latency (us) ptp (us)
FPGA GPUDirect (Perret et al. 2016) 5.24 2
DPDK + cudaMemcpy 22.44 16
DPDK gpudev 4.28 7

@ Comparable performance to FPGA GPUDirect
@ Higher observed jitter
@ Much better latency than DPDK + cudaMemcpy
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Radioastronomy

@ Real-time Fast Radio Burst (FRB) detection on NenuFAR

e Strong reliability constraints
e Medium data rate (10 Gbit/s)
e Strong scientific goal

@ Deployed on site, first iteration functional
@ Validated on pulsar data
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@ Real-time acquisition for Primary or Secondary radars

e Strong reliability constraints
e Huge data rate
e Medium latency constraints

@ Validated up to 99.7 Gbit/s on 100 GbE hardware (no packet
loss)

@ Desire to scale up
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Future work

@ More benchmarks

e Different latency measures (round-trip, per-packet vs per
image frame, ...)

e Latency at high bandwidth

o Closer latency estimation, considering neglected effects

@ 10GbE link
@ Readout pipelining
@ Computations

o Better jitter measurement
@ Complete support for MUDPI/RTMS
@ Higher level protocol description
@ Experiment using non-Nvidia hardware
@ Scale up
@ Jitter reduction
@ Offload packet processing (DPU ? DOCA ?)
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Conclusion

@ High performance, general purpose data acquisition system
for COTS hardware

o Low latency (~4 us)
e High bandwidth(~100 Gbit/s)

@ NIC < GPU DMA using DPDK gpudev
@ Partial support for MUDPI/RTMS, under completion
@ Currently under testing and integration in the COSMIC
framework (module st reams)
@ Already deployed for radioastronomy on NenuFAR
General considerations
@ Is it really simpler than FPGA ?

e Complexity of DPDK
o Dependency to Nvidia

@ Tradeoff between reusability and maintainability
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Thank you for your attention!
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