Context

High performance, low latency data acquisition for AO RTC RTC4AO^{6th}

Julien Plante julien.plante@protonmail.com

07-10-2023

Outline

- Context
 - MICADO RTC
 - State-of-the-art Ethernet data acquisition methods
- Feeding a GPU from a NIC
 - DPDK
 - GPUDirect RDMA
 - gpudev
 - Final design
- Results
 - Adaptive Optics
 - Others
- 4 Conclusion

MICADO SCAO RTC

Context

•00

MICADO SCAO RTC

State-of-the-art data acquisition methods

- Considering latency from packet reception at the NIC/FPGA and availability in GPU memory
- Interesting metric in the case of pipelining

Method	Latency (µs)	ptp (µs)
FPGA GPUDirect (Perret et al. 2016)	5.24	2
<pre>DPDK + cudaMemcpy</pre>	22.44	16

Goal

Very good solution based on FPGA, but can we achieve the same on COTS hardware?

- Use of Smart NIC
- Simpler system
- Different maintenance plan

DPDK

- Open-source userspace networking library
- Less overhead than the Linux networking stack
- Access point for advanced features of Smart NICs

GPUDirect RDMA

- DMA between a GPU and a third party device over PCIe
 - → Less transfers, less overhead
- Implemented in DPDK for Nvidia Ethernet NICs

References

gpudev

Context

- DPDK module dedicated to GPU control
 - Abstractions (malloc, memset, ...)
 - Utilities (mapped flag, communication list)
- Framework guiding to best performance
 - Persistent kernels
 - Data locality

Final design overview

Semi-persistent kernel: launched for each image frame

Final design overview

Feature set:

- Support for multiple WFS → scalability for other instruments, such as MAVIS
- One CUDA block per WFS → minimal GPU usage
 - Possibility to overlap acquisition with computations
- Partial support (as of today) of the RTMS protocol
 - ✓ Packet Type, Endianness, Payload Size, Payload Tag, Padding, Incomplete frame management, WFSCs ALICE and LISA
 - X Stream Error, Version, IsSimSource, Extended Info, WFSC **FREDA**
- Ongoing validation with the ESO WFS Simulator

Adaptive Optics

- Benchmark over ALICE WFSC frame transmission
- Point-to-point communication over a 40 GbE link
- Nvidia Connectx-5 NIC + A100 GPU
- Custom sender, written in pure DPDK (no GPU)

Adaptive Optics

Method	Latency (µs)	ptp (µs)
FPGA GPUDirect (Perret et al. 2016)	5.24	2
<pre>DPDK + cudaMemcpy</pre>	22.44	16
DPDK gpudev	4.28	7

- Comparable performance to FPGA GPUDirect
- Higher observed jitter
- Much better latency than DPDK + cudaMemcpy

Radioastronomy

- Real-time Fast Radio Burst (FRB) detection on NenuFAR
 - Strong reliability constraints
 - Medium data rate (10 Gbit/s)
 - Strong scientific goal
- Deployed on site, first iteration functional
- Validated on pulsar data

Radar

Context

- Real-time acquisition for Primary or Secondary radars
 - Strong reliability constraints
 - Huge data rate
 - Medium latency constraints
- Validated up to 99.7 Gbit/s on 100 GbE hardware (no packet loss)
- Desire to scale up

Future work

- More benchmarks
 - Different latency measures (round-trip, per-packet vs per image frame, ...)
 - Latency at high bandwidth
 - Closer latency estimation, considering neglected effects
 - 10 GbE link
 - Readout pipelining
 - Computations
 - Better jitter measurement
- Complete support for MUDPI/RTMS
- Higher level protocol description
- Experiment using non-Nvidia hardware
- Scale up
- Jitter reduction
- Offload packet processing (DPU ? DOCA ?)

Conclusion

 High performance, general purpose data acquisition system for COTS hardware

Results

- Low latency (~4 μs)
- High bandwidth(~100 Gbit/s)
- NIC ↔ GPU DMA using DPDK gpudev
- Partial support for MUDPI/RTMS, under completion
- Currently under testing and integration in the COSMIC framework (module streams)
- Already deployed for radioastronomy on NenuFAR

General considerations

- Is it really simpler than FPGA?
 - Complexity of DPDK
 - Dependency to Nvidia
- Tradeoff between reusability and maintainability

References

References I

Context

- Clénet, Yann et al. (Nov. 2019). "MICADO-MAORY SCAO Preliminary design, development plan & calibration strategies". In: *Adaptive Optics for Extremely Large Telescopes conference, 6th edition.* Québec, Canada. URL: https://hal.science/hal-03078430.
- Perret, Denis et al. (2016). "Bridging FPGA and GPU technologies for AO real-time control". In: Adaptive Optics Systems V. Ed. by Enrico Marchetti, Laird M. Close, and Jean-Pierre Véran. Vol. 9909. International Society for Optics and Photonics. SPIE, p. 99094M. DOI:

10.1117/12.2232858.URL: https://doi.org/10.1117/12.2232858.

References II

Thank you for your attention!

RISE International Network for Solutions Technologies and Applications of Real-time Systems

