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Motivation

• Larger subapertures in LGS/NGS SH-WFS →
better sky coverage + SNR,

• Centroid-based reconstruction discards everything
above tip/tilt in a subaperture,

• Image-to-image translation allows us to fetch the
remaining useful information, approaching the limit
of SH-WFSs.



2022→2023

• Nice performance in simulation with cGAN and UNet reconstruction for:
• AO control (Smith+ UAI 2022, Pou+ SPIE 2022),
• PSF-R (Smith+ SPIE 2022, Smith+ JATIS 2023).

• Main questions raised were:
• How do we know what the network is doing? - ML Black Box
• What are the effects of noise on the estimates?
• What are the limits of these techniques?

• Turned to a statistical analysis, to learn the limits:
• Wavefront decomposition using Karhunen–Loève (KL) modes,
• Analysis of noise impact in E2E simulations.



Generating Training Data

• Issue - we never truly know the wavefront when on-sky.
• supervised learning requires ”truth” wavefront,
• For now, simulate with sophisticated E2E AO simulation software,
• In future, we can use an SLM or DM to generate training data on the bench.

• COMPASS - COMputing Platform for Adaptive optics SystemS
• Unlimited data for training / analysis - unique seeding of atmosphere
• Python API - easy integration with pytorch workflows
• Easily configurable for AO design / simulation tasks



conditional Generative Adversarial Network (cGAN)

Network Design1:

cGAN Components

• UNet Generator Network

• Patch GAN Discriminator

• Dropout noise (z)

1[Isola 2017]



cGAN Network Loss

• discriminator is punished for missing ”fakes” and rejecting ”reals”,

• generator is punished for getting caught,

• cGAN is extension of UNet,

• i.e., Our UNet is the same cGAN with LcGAN(G,D) loss term set to zero.

LcGAN(G,D) = Ex ,y [logD(x , y)]

+ Ex ,z [log(1− D(x ,G (x , z))] (1)

G ∗ = argmin
G

max
D

LcGAN(G,D)

+ λLL1(G ) + λMLL1(GM) (2)

LL1(G ) = Ex ,y ,z [||y − G (x , z)||1] (3)
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Modal Analysis of UNet and cGAN

• ANNs translate WFS image to estimated WFS phase,

• We compare the variance of this phase to the variance of the true phase,

• Comparison is done in KL mode space, over 20k frames,

• E [φ2
truth] vs E [φ

2
estimated]



Variance of Estimate



So cGAN is clearly better?

• This is what we thought too, but we should dig a bit deeper,

• Now let’s see the variance of the residual:

φresidual = φtruth − φestimated

• E [φ2
residual ] vs E [φ

2
truth]



Variance of Residual



uNet ̸= cGAN

• cGAN perfects the statistics of the phase across all modes, but not always the
right value,

• UNet (without discriminator) is more conservative on statistics, but actually has
better residuals.
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Previously - GAN Assisted Open Loop (GAOL) Control

GAOL performance
with variation of turbulence
vs Linear re-constructor benchmark



UNet Assisted Open Loop (UAOL) control (with DM shape) vs RON (+0 DM act)
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UNet Assisted Open Loop (UAOL) control (with DM shape) vs RON (+7 DM act)
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cGAN Noise analysis for PSF-R

• cGAN performance on PSF-R tasks demonstrate poor performance with noisy data

• Previous great results with bright guide star (Mag 3)

• Noise makes cGAN networks difficult to train

• Dominant noise effect appears to be photon noise



Long Exposure PSF With Noise Off

• Noise Off

• 16 x 16 apertures

• 8 x 8 pixels per sub



Long Exposure PSF With Noise On

• 1 Photon per pixel RON

• Photon Noise On

• 396 Photons per sub-aperture

• 16 x 16 apertures

• 8 x 8 pixels per sub



(a) No Noise - 396 photons /sub (b) 1 RON, photon noise on
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Discussion

• We have an accurate and robust method for estimating wavefront phase directly
from the WFS image for control (UNet) and PSF-R (cGAN) when noise is low,

• With the KL modal analysis, we can see what each ML method is interpreting and
generating from the WFS and simulated turnulance,

• UAOL control (UNet) even with reasonably low photon count has excellent
robustness to noise, Fried parameter and guide star magnitude in simulated
experiments

• cGAN performance and training significantly impacted by noisy data for low
photon count, photon noise is dominant effect.



Thank you and Further reading

• Enhanced adaptive optics control with image to image translation Jeffrey Smith, Jesse Cranney, Charles
Gretton, Damien Gratadour; Proceedings of the Thirty-Eighth Conference on Uncertainty in Artificial
Intelligence, PMLR 180:1846-1856

• Jeffrey Smith, Jesse Cranney, Charles Gretton, and Damien Gratadour ”Image-to-image translation for
wavefront and PSF estimation”, Proc. SPIE 12185, Adaptive Optics Systems VIII, 121852L (29 August
2022); https://doi.org/10.1117/12.2629638

• Jeffrey Smith, Jesse Cranney, Charles Gretton, Damien Gratadour, ”Image-to-image translation for
wavefront and point spread function estimation,” J. Astron. Telesc. Instrum. Syst. 9(1) 019001 (19
January 2023) https://doi.org/10.1117/1.JATIS.9.1.019001

• B. Pou, J. Smith, E. Quinones, M. Martin, D. Gratadour, ”Model-free reinforcement learning with a
non-linear reconstructor for closed-loop adaptive optics control with a pyramid wavefront sensor,” Proc.
SPIE 12185, Adaptive Optics Systems VIII, 121852U (29 August 2022);
https://doi.org/10.1117/12.2627849

• https://github.com/GANs4AO/I2IT4AO



Appendix



Performance of UNet with Noisy data - Modal Weight
variance comparison



UNet Noise - Variance of the difference



cGAN Noise - Modal Weight variance comparison



cGAN Noise - Variance of the difference



cGAN Noise - Photon Noise



COMPASS GUI - example data



cGAN inference (mild turbulence)

Inferred result for cGAN vs
Simulation ground truth residual
phase

• Note the SH-WFS spots for
phase with milder turbulence

• A single trained network is
robust over the full range of
expected turbulence
(r0 = [0.06m, 0.16m])



cGAN inference (strong turbulence)

Inferred result for cGAN vs
simulation ground truth residual
phase

• Note the SH-WFS spots for
phase with stronger
turbulence

• Clearly high frequency
features are captured



Long Exp. PSF from cGAN – Split View

r0 = 0.093m



Long Exp. PSF from cGAN - Circular Avg.

• Data driven method captures
features missed by the
reference statistical model

• Symmetry error correction of
a few orders of magnitude

• Important for tasks such as
exo-planet detection



GAN Assisted Open Loop Control (GAOL)

• Now that we have a method of estimating wavefront phase with a cGAN, we can
apply this to AO control

• However, modifying the AO estimation in closed loop will alter the data our cGAN
was trained on.

• Solution - apply secondary corrections from the cGAN estimates in open loop with
an independent DM.

• This a relatively small change to a typical closed loop, with only one additional
DM required.



GAOL AO design

• Highlighted second control step in
open loop augments the closed loop
design

• The ’Woofer’ DM applies linear
control applying low frequency
correction

• The ’Tweeter’ DM applies higher
frequency corrections (cGAN) in open
loop, which is not fed back to the
WFS.



GAOL AO - control law

• The ’Woofer’ DM uses a linear controller, using the control law below.

• The ’Tweeter’ DM is controlled by the cGAN estimates using the same control
law, however there is no feed back in this case.

• Both mirrors combine estimates with the previous iteration control solution
controlled by the gain (g)

u0 = 0, uk = (1− g)uk−1 + gRDuk−2 + gRsk (4)

unl0 = 0, unlk = (1− gnl)unlk−1 + gnlRnlŷk (5)



GAOL Phase
Comparison

• Contrast with linear control

• Single iteration comparison for the
same input data after 2000 frames

• Clear out-performance in GAOL over
purely linear control



GAOL - actuator density

GAOL performance (Long Exposure SR) for increased actuator count vs Linear
reconstructor and Oracle benchmarks



GAOL - robustness to turbulence

GAOL performance (Long Exposure SR) with variation of turbulence (Fried parameter)
vs Linear reconstructor benchmarks (+ 7 actuators)



UNet inference

• In training sample inference
from UNet

• Notice the lack of cGAN loss
creates blurry, low frequency
phase estimates



Long Exp. PSF from UNet – Split View



UNet vs cGAN - Circular Avg.
UNet cGAN



PSF from Wavefront Phase

• Point Spread Function (PSF) can be directly calculated from the wavefront phase.

• This process is not reversible, so phase estimation provides additional
opportunities over estimating the PSF directly

PSF = |FFT(amplitude · ei·phase)|2 (6)



Training Parameters (COMPASS)

Telescope Parameters
Diameter 8 m

Simulated Atmospheric Parameters
Number of Layers 1
r0 0.093 to 0.400 m
Wind Velocity 10 ms−1

Target Parameters
Wavelength λt 1.65 µm

WFS Parameters
Number of sub-apertures 16 x 16 x 8pix
Wavelength λwfs 0.5 µm

AO Parameters
Loop frequency 500 Hz
Delay 2 frames
Integrator Gain 0.4

DM Parameters
Number of DM actuators 17 x 17
1 tip-tilt mirror



SNR conversion table

Table: Relative SNR to guide star magnitude for test geometry

Readout Noise
Guide Star Magnitude

10 11 12 13 14 15

0 6.25 3.94 2.49 1.57 0.99 0.63
1 6.17 3.82 2.31 1.32 0.70 0.33
2 5.95 3.52 1.94 0.97 0.44 0.19
3 5.63 3.14 1.59 0.73 0.31 0.13

Table: Relative photon count to guide star magnitude for SH-WFS with 16 x 16 sub-apertures
and 8 x 8 pixels per sub-aperture

Guide Star Magnitude Photons per sub-aperture Photons per pixel

10 2500.00 39.06
11 995.27 15.55
12 396.22 6.19
13 157.74 2.46
14 62.80 0.98
15 25.00 0.39



Training Parameters (GAN)

Generator (UNet)
Convolutional Layers 8

Discriminator
Convolutional Layers 3

Training Data
Image pairs 350000
Image size 512x512pix (padded)

hyper-parameters
Lambda (λ) 150
Lambda-Masked (λM) 30
Batch Size 1
Epochs 65
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