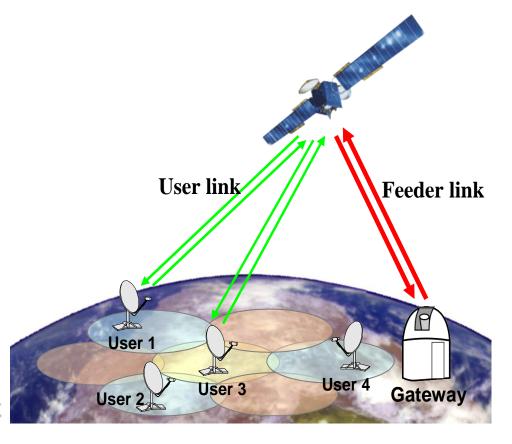
PREDICTIVE CONTROL SCHEMES FOR ADAPTIVE OPTICS IN FREE SPACE OPTICAL COMMUNICATION

J. S. Torres (1,2), H.-F. Raynaud (2), A. P. Reeves (1), D. Laidlaw (1), C. Kulcsár (2)

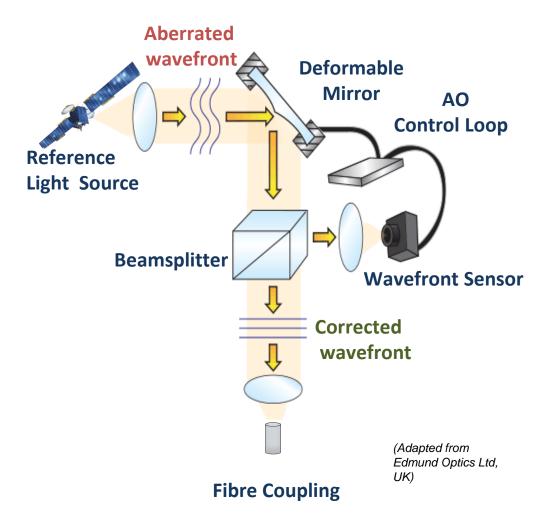
- (1) Institute for Communication and Navigation, German Aerospace Center (DLR), 82234 Weßling, Germany
- (2) Université Paris-Saclay, Institut d'Optique Graduate School, CNRS, Laboratoire Charles Fabry, 91127, Palaiseau, France



IntroductionFree Space Optical Communication (FSOC)

INSTITUT
d'OPTIQUE
GRADUATE SCHOOL
ParisTech

- High-speed data transmission in free space using light as an information carrier;
- Significantly advantageous over Radio Frequency (RF):
 - High bandwidth;
 - Unregulated spectrum;
 - Enhanced security.
- Atmospheric Turbulence:
 - Scintillation and fades at the satellite;
 - Reduced and unreliable fibre coupling efficiency at the Optical Ground Station (OGS).


(Adapted from European AO Summer School 2023)

Introduction Adaptive Optics (AO) for FSOC

 Wavefront distortion and pre-distortion compensation;

- Key differences from Astronomy:
 - Non-optimal telescope locations;
 - Stronger and faster changing turbulence;
 - Lower Fried Parameter (r0);
 - Required higher operation frequency;
 - ✓ Brighter reference;
 - ✓ Smaller aperture diameters.

Introduction Application Specifications

Main Challenges

- Strong, fast changing turbulence;
- Strong scintillation:
 - Elevated number of fades on the wavefront;
 - Missing measurements;

Resulting Requirements

- Extract turbulence characteristics to build predictive models;
- Minimise the scintillation and resulting fades;
- Maximise coupling efficiency;

Integral action control prone to instability

Alternative robust predictive control algorithms

Predictive Control Algorithms Linear Quadratic Gaussian Regulator

Build a dynamical stochastic model of the phase:

$$X_{k+1} = AX_k + v$$
$$\phi_k = C_{\phi}X_k$$

Predict the phase with a Kalman Filter:

$$\hat{X}_{k+1|k} = (A - L_{\infty} C)\hat{X}_{k|k-1} + L_{\infty}(y_{k-1} M_{int} u_{k-2})$$

Project the predicted phase onto the actuator space:

$$u_k = P\hat{\phi}_{k+1|k} = PC_{\phi}\hat{X}_{k+1|k}$$

 $oldsymbol{X}$ State vector

 $oldsymbol{A}$ State matrix

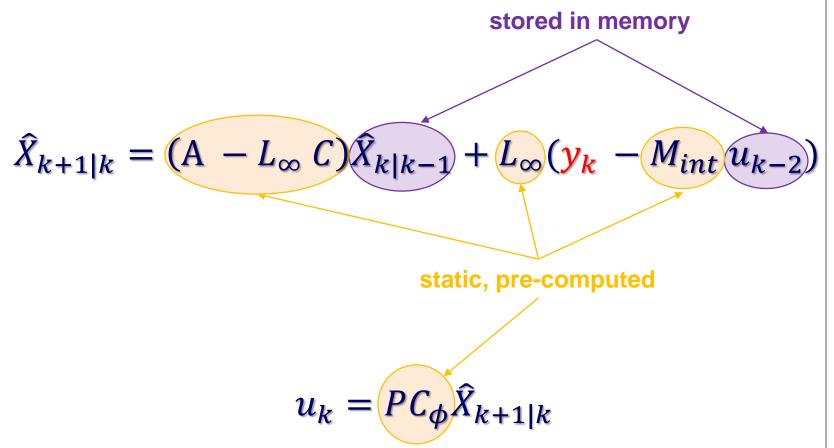
v Process noise

 ϕ Phase disturbance

 $\mathcal{C}_{oldsymbol{\phi}}$ State to phase

 L_{∞} Kalman gain

y Vector of measurements


 M_{int} Actuator to measurement

u Vector of control commands

P Phase to actuators

Predictive Control Algorithms Linear Quadratic Gaussian Regulator

X State vector

A State matrix

v Process noise

 ϕ Phase disturbance

 $\mathcal{C}_{oldsymbol{\phi}}$ State to phase

 L_{∞} Kalman gain

y Vector of measurements

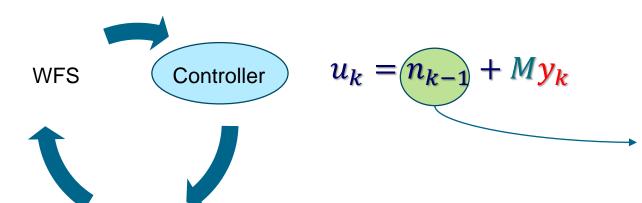
 M_{int} Actuator to measurement

u Vector of control commands

P Phase to actuators

Predictive Control Algorithms

Linear Quadratic Gaussian Regulator

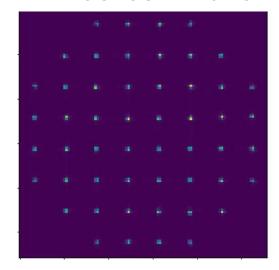

Optimization: Parallel Computing

$$\hat{X}_{k+1|k} = M_1 \hat{X}_{k|k-1} + M_2 y_k - M_3 u_{k-2}$$

$$u_k = M_4 \hat{X}_{k+1|k}$$

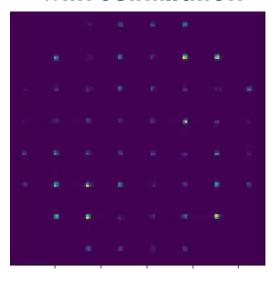
Main Loop Process

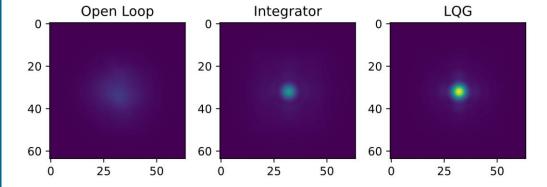
DM

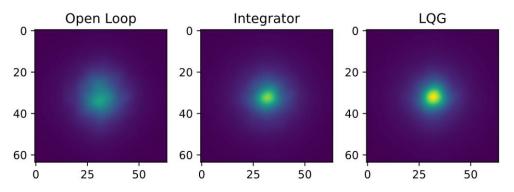

Parallel Calculations

- intermediate variables
- recurrences

Predictive Control Algorithms Addressing Scintillation

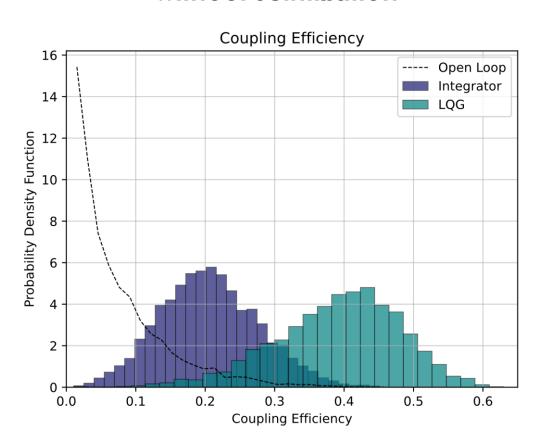

without scintillation



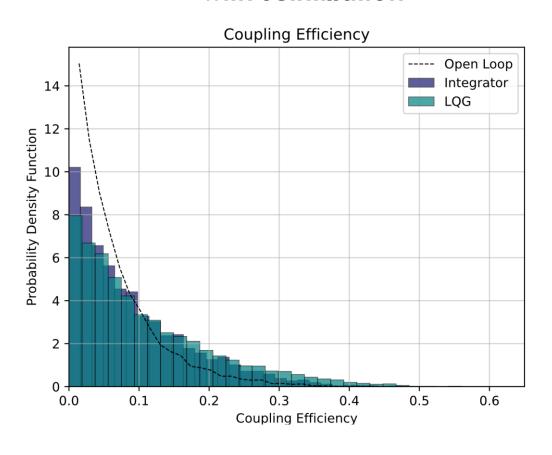

Animations slowed down:

- r0 = 2 cm @ 550 nm
- 2000 frames (at 2 kHz)
- 1second →1 minute

with scintillation



J. S. Torres, A. P. Reeves, C. Kulcsár, H. -. Raynaud, R. M. Calvo, and H. F. Kelemu, "Turbulence Characterization of a Free Space Optical Communication Link for High Performance Adaptive Optics Control," in Imaging and Applied Optics Congress 2022.


Predictive Control Algorithms Addressing Scintillation

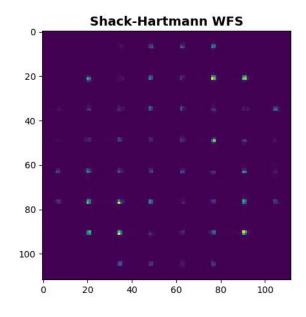
without scintillation

with scintillation

J. S. Torres, A. P. Reeves, C. Kulcsár, H. -. Raynaud, R. M. Calvo, and H. F. Kelemu, "Turbulence Characterization of a Free Space Optical Communication Link for High Performance Adaptive Optics Control," in Imaging and Applied Optics Congress 2022.

Predictive Control Algorithms

Addressing Scintillation



[L. Marquis, SPIE 2022]

- Scintillation causes degraded wfs measurements;
- Measurements have set flux threshold:
 - if below threshold, then it is set to 0.
- Replace invalidated measurements by Kalman filter predictions computed from:

$$\hat{y}_{k|k-1} = C\hat{X}_{k|k-1} - M_{int}u_{k-2}$$

X State vector

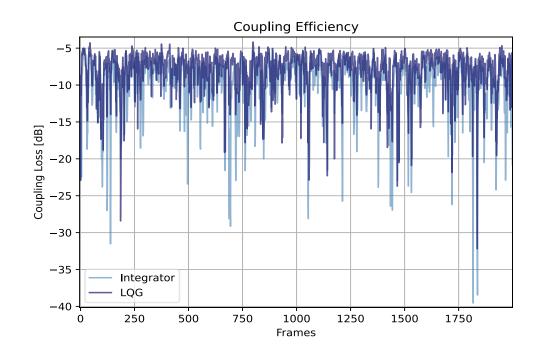
C State to Measurements

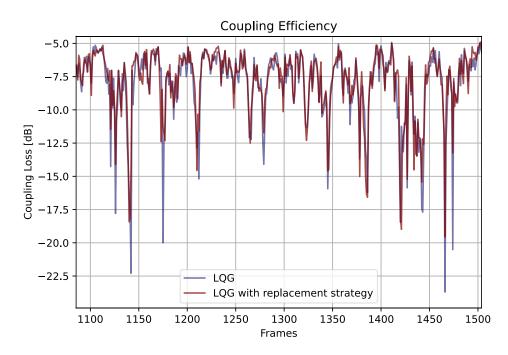
y Vector of measurements

 M_{int} Actuators to measurements

AO for FSOC Simulations System Characteristics

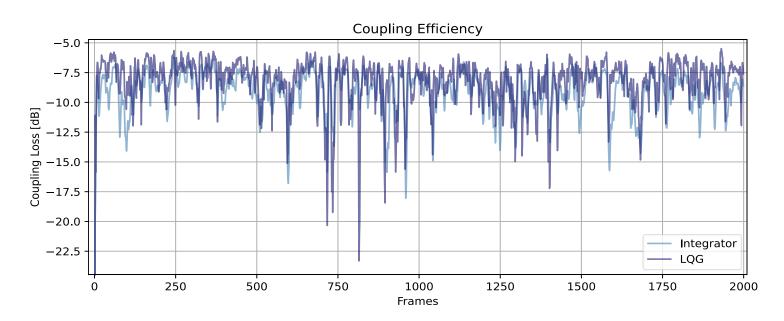
DLR OGS


- Telescope
 - diameter 80 cm
 - obscuration 30 cm
- AO system
 - DM192 (16 x 16 actuators)
 - SH-WFS (13 x 13 subapertures)



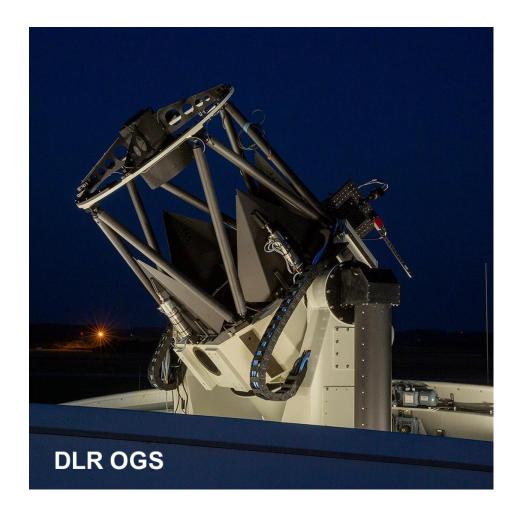
AO for FSOC Simulations Simulation Results for LEO scenario

Angular Spectrum Propagation	Mean Coupling Efficiency (%)	Mean Strehl Ratio (%)
Integrator	12.9	20.6
LQG	18.0	28.9
LQG w/ Replacement	18.4	29.6


AO for FSOC SimulationsSimulation Results for GEO scenario

Conditions simulated:

- HV 5/7, strong ground layer turbulence
- Bufton wind profile
- Low elevation angle


Angular Spectrum Propagation	Mean Coupling Efficiency (%)	Mean Strehl Ratio (%)
Integrator	13.2	21.2
LQG	15.9	25.5
LQG w/ Replacement	16.2	25.8

Conclusion Summary

- FSOC has several advantages over RF but links are hindered by <u>atmospheric turbulence</u>;
- Tight requirements in FSOC AO can be addressed by predictive control algorithms;
- RTC main loop process computations can be optimised with parallel computing techniques;
- Simulation results show improvements in fibre coupling, added stability and reduced fade depth, further improvements underway;
- On-sky testing in 2024.

THANK YOU!

Joana Torres

joana.dosuldamotatorres@dlr.de

