

Real-time pixel data processing from energy-resolving detectors.

David Barr Kieran O'brien Deli Geng Aurelie Magniez

Real-time resonator data processing from MKIDS

David Barr Kieran O'brien Deli Geng Aurelie Magniez

Contents

- What are MKIDS
- History of data processing of MKIDS
- FPGA, CPUs and GPUs
- How does this effect the RTC
- Future...

The CCD bucket

- CCDs collect data over time, then readout in full.
- Fixed integration time.
- Temperature
 - -100+k

MKIDs - Microwave Kinetic Inductance Detectors

CREDIT: www.sron.nl

CREDIT: MKIDs readout: McHugh et al. 2012, "A readout for large arrays of microwave kinetic inductance detectors" Rev. Sci. Inst., 83, 044702

Photon detection

- Resonators phase measured at 1 MHz.
- Photon energy and wavelength retrieved from integrated phase.
- Matched filter used to detect these arrivals.
- Detection bandwidth demonstrated 400 nm to 1500¹ nm but no technical limits to go beyond

¹ De Visser et al., 2021, DOI: 10.1103/PhysRevApplied.16.034051

Photon counting rather than full frames.

- Readout provides
 - Photon wavelength/energy
 - Which resonator
 - Time stamp
- Every photon separately.
- These can be buffered into packets of N photos or sent individually depending on use case.

Gen 1 - Casper Roach 2011

Credit: Techneinstruments.com

UC Berkeley's CASPER (Collaboration for Astronomy Signal Processing and Electronics Research)

ROACH (Reconfigurable Open Architecture Computing Hardware) board family

Mainly used for radio astronomy

- Xilinx Virtex-5
- Add on boards for ADC DACs.
- Provides Matched filter and sends 1 packet per photon via ethernet.
- Up to 256 resonators supported.

Casper Roach2 2015

- Xilinx Virtex-6
- More resources allow more 'pixels'.
- Up to 1K resonators
- 10 GbE networking.

Credit: Durham University

Xilinx(AMD) Radio Frequency System-on-Chip(RFSoC) FPGA

CREDIT: www.xilinx.com

- Built-in APUs(PS: Processing System) enabling a neat firmware solution;
 - Complete application system;
 - DDR RAM
 - Ethernet interface
 - UART
- Built-in RF ADCs and DACs making the RF implementation smaller, cheaper and easier;
 - ADC 12bit 4.096Gsps x8
 - DAC 14bit 6.554Gsps x8

Xilinx

- Onboard processing
 - 2k resonators
- Stream data onwards:
 - 8k resonators
- Output 32 Gbit/s
 - 2x 25 GbE networks.

- 240 x 240 detectors
- On board processing
 - 30 FPGA boards required.
- Streaming.
 - 8 FPGA boards required.

Xilinx

- Onboard processing
 - 2k resonators
- Stream data onwards:
 - 8k resonators
- Output 32 Gbit/s
 - 2x 25 GbE networks.

- 240 x 240 detectors
- On board processing
 - 30 FPGA boards required.
- Streaming.
 - 8 FPGA boards required.

For comparison

Roach 1

225 boards

Roach 2

57 boards

Moving FPGA to Servers for photon detection

- Latest FPGA more ADC and DAC but not enough resources for pulse detection on board.
- Complex to program requiring specialist FPGA engineers.
- Move to server based (CPU or GPU)
 - Allows more accessible programming for scientists.
 - Off the shelf hardware
 - Cheaper.
 - Faster development

How many servers what hardware?

DAO

- Processes are completely independent
- Data are all shared with the same format, any new process can get access to everything always the same way
- Fast and simple read write access
- Easy to synchronize
- C/C++/Python and more to come (Matlab)
- GPU/CPU compatible
- Distributed (scalable)
- Biggest advantage of DAO is its flexibility and easy to use approach
- All the data are available at all time, from any language
- Timing information and synchronization tools available

process

MKID Photon detection on servers.

GPU or CPU

GPU for matched filter

server depending on resources.

Prototype

MKID readout?

MKID readout?

First pass at an MKID RTC

Traditional RTC for proof of concept.

Possibilities for investigation.

- Hyperspectral wavefront sensing
 - Optical gain tracking and r0 estimation.
- Adaptive integration times.
- Chromatic super resolution
- Pupil dispersion : widening the useable bandpass

Estimate R0 with hyperspectral wavefront sensor.

Simulation parameters

8 m telescope

500 modes

40 subapertures

*See Aurelie Magniez AO4ELT preceding's for more information

Adaptive frame times

- Frame times based on flux.
 - New frame every 100 photons use last 1000.

Compensate different wavelengths at different rates.

What else will this unlock?

CFAI Recruitment

Current/closed

- Postdoc MKID + AO (deadline 5th)
- Assistant Optical Engineer (deadline 10th)

Upcoming

- post docs in AO focuses on RTC
- graduate software engineer roles.

Website, talk or email me for more information

https://www.durham.ac.uk/job-vacancies/ david.barr@durham.ac.uk

Credit: Durham University

