Spectroscopy

Or, the art Gandalf does not approve of.

Luca Sbordone - ESO Chile



“..WHITE CLOTH MAY BE DY€ED. THE WHITE PAGE CAN
Be OVERWNRITTEN; AND THE WHITE LIGHT CAN B¢
BROKEN.”

“IN WHICH CASE IT 1§ NO LONGER. WHITE,” SAID 1.

“AND HE THAT BREAKS A THING TO FIND OUT WHAT
IT 1S HAS LEFT THE PATH OF WISDOM.”

J. R. R. TOLKIEN
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0 Spectrographs?

- A spectrograph is a
camera coupled with a
dispersing element

Collimator

Slit

- Images of the source at
different wavelengths
fall on different places
in the detector

- The amount of light
emitted at each "%
wavelength can be i
measured: the spectrum
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Tools of the trade: the humble prism

First dispersing element
invented/discovered

Uses the fact that
refraction is dependent
on light wavelength (any
refractive element is
chromatic)

Longer wavelength,
redder light is deviated
less than bluer, shorter
wavelength light.

In general prisms have
low dispersion
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Tools of the trade: the humble prism

First dispersing element
invented/discovered

Uses the fact that
refraction is dependent
on light wavelength (any
refractive element is
chromatic)

Longer wavelength,
redder light is deviated
less than bluer, shorter
wavelength light.

In general prisms have
low dispersion

DISPERSION:
The angular (or spatial, after focusing
by a camera on a focus plane /
detector) separation between two
wavelengths after passing through a
dispersing element:

O\ oA oA 1
 or 2

50 5 00 Fourm

where fcam is the camera focal
length.
Do not confuse it with resolution!
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Tools of the trade: the humble prism

Refractive Index
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In prisms dispersion is due to the variation of n with the wavelength.

Usually then dispersion is not constant with wavelength
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Tools of the trade: the diffraction grating

Red light through two slits Red light through White light through
many slits l diffraction grating - order
g( - = g 3
S :ﬁf‘\ - g )
S i _
g gL = n=0
< 7 = : ’
P < < g 3
% / S I = 4
Broad lines; low resolution More slits; sharper lines Spectrum at each order

- Diffraction gratings exploit the superposition of diffraction and
interference, manifestation of the wave behavior of light.

- Although the pattern is the same for each wavelength, spacing
depends on wavelength, hence the dispersion.

- Gratings generate multiple dispersion orders, of increasing
dispersion: very high dispersions can be achieved at high orders.

- Red light is dispersed more than blue.
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Single slit diffraction

< /
a
) “ .
>
_ Laser through a single pinhole

<170 -b 0 5 10

I, sin (22 sin o A\
— = ( A ) sin 6 =~ 1.223

IR %b SIN o

Angle of 1st zero intensity
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Multiple slits interference

W

& dark  reflecting

b: slit width

g: period

o.: diffraction angle
B: angle of incidence
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Tools of the trade: the diffraction grating

multiple slit interference pattern
| ‘l,

o N R R

Single-slit diffraction envelope

b bt ol VootV el Vs, ),
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The grating equation

Deflection is higher for longer
wavelengths.

Dispersion increases as order (m)

increases, and period (g) Sin oy, — Sin 8 = +m—
decreases. g
Per order, dispersion is ~linear d\  gcosa
Dispersion does not depend on the dae  m

size of a single grating “slit” (b)
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Adding the camera

Collimator

Slit
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From dispersion to resolution

2
sin (N%g sin a)
sin (%g sin a)
% . gcosa
daa  m

In the interference term of the
grating intensity formula, N is the

total number of rules in the on2h AN A AN N
spectrograph beam.

The larger N, the narrower and
higher the interference maxima.

m is the order: the larger m, the Jpetanry 3 -
larger the dispersion... 2= sina

=ik I = BEE IS5
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From dispersion to resolution

Sin(N%gsinoz) ° p /\85 ﬁl ﬁl ‘ fﬁ‘ ﬂ '

sin (52 sin «) (SPECTRAL) RESOLUTION

Is the minimum wavelength
d\ g CC difference that the spectrograph can
— —— separate reliably.

do Ti Usually written as:

R=\/A\
In the interference term of the | D
grating intensity formula, N is the ~ _lnal nal ol llnal laal lanl
total number of rules in the ov-o\ NN A AT A
spectrograph beam.
The larger N, the narrower and
higher the interference maxima.
m Is the order: the larger m, the IS : 5 0
larger the dispersion... Z=F sina
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From dispersion to resolution

A+ AN
2Y per Rayleigh
criterion....

two wavelengths A and A+AA

are barely separable in order

m if the main intensity

maximum of A+AA is located

at minimum of A. A
Since m determines the )\
dispersion and N the width R = =m X N
of intensity maxima: A)\

=ik I = BEE IS5
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Res. Intens.

From dispersion to resolution

40,000 - high resolution - AA=0.01 nm
10,000 - medium resolution - AA= 0.04 nm
5,000 - low resolution - AA= 0.08 nm

410.2

410.4

410.6 410.8 411.0 411.2

wavelength (nm)
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Res. Intens.
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From dispersion to resolution
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Introducing seeing

Plane waves from distant point source

o
Seeing is the distortion/

blurring of astronomical S undistorted
. . t
images due to the variable in atmosphere
light refraction in the turbulent

atmosphere

: : : Perturbed illatin
Refraction —> seeing is a wavefronts L
chromatic phenomenon: blue
light is refracted better, thus Q

seeing is worse In the blue
speckling

8m-class telescopes have ~0.01" diffraction-limited
images (V band), median seeing in Paranal is 0.8" (x80)

Adaptive Optics can recover (most) seeing in the extreme
red and infrared, but not in the blue

flashing

=ik I = BEE IS5
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Enter the spectrograph slit...

Intensity (arbitrary)

Spectrograph slit

normal to
dispersion:
Stellar seeing
Image

588

Wavelength!

< >

parallel to
dispersion:
Stellar seeing image
convoluted with slit
transmission
(square func +
diffraction)

588

'l--

4
4
4

A monochromatic
image of the slit is
produced on the detector
at the position of every
wavelength

p
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Slit and resolution

]
Slit

Slit width on the sky (in arcsec.) is limited by the
need not to lose too much light, hence depends on

typical site seeing. The spectrograph has to be
designed accordingly, engineering constraints on
feam/fcol permitting: the longer feo, the larger the
grating, and the spectrograph.

/ fcam .

B fcoll

dA  gcosa
do B mfcam
>\ CcO
R — mA  feoll
gcosa S

VLT-UVES Silit viewer
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Detector and resolution

| _ Undersampling: _ | _ F
0.7 AN1=0.011 nm/pix 0.7 Severe undersampling: 3
0.6F 3 06¢F 2AN=0.022 nm/pix 3

0.5¢ = 055 :

1.0E
0.7 _ Slight oversampling: _ NquISt criterion:

0.6 AN3=00038 nm/pix 3 to properly recover
0.5 i line profile one needs
, ......... —— at least 2 samples (=pixe|S) per re-
; \/\/__ solution element.
This has to be matched with available
detector (pixels ~15 ym, CCD size) and
Atg%??:m : optical/mechanical constraints (size of
| § corrected camera field, fcam/fcol, full

453.3 453.4 453.5 453.6 instrument size...)
wavelength (nm) — NI SHEI LI -+l
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Diffraction modulation L Szlse?“;ﬂ(r)r:\blenrcreases with z
sends most light to low — \ ki 3
orders! \/
- Y,

0 p

4 N

As order number increases,
longer wavelengths from
order m-1 overlap with
shorter from order m...

The free spectral range 2
. o e —— 2 decreases with increasing

::ngulor distance along the image plane 0 rd er
% /
sin™t (mA1/d) =sin”H[(m 4+ 1) Ao/d] = X = A — Ay = Xa/m
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Solution: Blazed Grating

Incoming
light

Individual
NUITors

Single-slit diffraction envelope for blazed grating

sin {(7b/\) [sin (o + ¢) + sin (8 + ¢)]} ]
(mb/A) [sin (a + ¢) +sin (8 + @)

T T T T T T T T I | I | I I I I I I T I

Blaze distribution — 1.0+
¢ =20°

Blaze distribution
¢ =20° d=1/600 mm
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Solution: Blazed Grating

Incoming
= A

Blazing the grating
=== moves the angle at which
e the diffraction peak is
Single-slit diffraction envelope fo placed, IeaVing the
1(8)= {Sin{(”b/ Mlsi interference pattern
(mb/A) lsin unaffected

Blaze distribution — 1.0
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The echelle cross-dispersed spectrograph

- No shadowing, very high orders (100+),
high dispersion
- Order overlap avoided by cross-dispersion

|4
. L . Individual
| Main Grating dispersion =———> I;;irlr‘(l)‘rsu‘i
‘ ‘ ‘ ‘ Nth order

Overlapping

Echelle spectra
(N+1)th order | | | | grating
@) Cross
o disperser
o ,
¢
Q
=
B
. \ Spectra
O Se. o) . . .
l\ ¥.. = separated Direction
Nth order (N+|)th order o out T TT——uu0y ofdispersion by
a2 the cross
o) disperser
.,\\ ~.~\\ 2. \
g Direction
, ofdispersion by
the echelle
grating
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Flavors of spectrographs: single object

« “Long slit” low/mid resolution: EFOSC, i
FORS. R<5k (~100 km/s), 100+nm ’ i
coverage, high efficiency, often multi- B S| B
mode (imager, MOS, LSS...) I l L)
i © T

« Echelle mid-to-high resol.: X-Shooter,
UVES, FEROS. R=10k - 120k (30-2.5 km/s),
cross-dispersed, short-slit or fiber-fed, 100
- 700 nm coverage, multi-arm, low-to-mid
efficiency

- Echelle high-res, high-stability: HARPS,
ESPRESSO, R=100k-200k (up to 1.2 km/s),
100+nm coverage, fiber-fed, thermally
stabilized, 10 cm/s long-term precision,
multi-arm, low efficiency.

— b1 Il = B 15
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*EQ?* Flavors of spectrographs: Multi-Object

e “On-Chip” low/mid resolution:
EFOSC, FORS, (VIMOS). Same as long
slit, but multiple “slitlets” via
masks. Field < 10’, 10s-100s objects.

« Positionable-fiber-fed: FLAMES MEDUSA,
(4MOST), R=2k-20k, 100-1000 spectra, 25’ to 1
degree field, 10-500 nm range (dep. on res.).
Complex positioner mechanics, survey-
optimized, “blind” pointing, no spatial resolution

— b1 Il = B 15
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*EQS* Flavors of spectrographs: Integral Field

- FLAMES ARGUS/IFU, MUSE. Cover an area (up to ~1’) with
spctrograph “pick-ups” (fibers / slicers). 100 - 1000 spectra, multi-
spectrograph, spectral resol. / spatial resol. / spectral coverage

trade-off

Focal Spectrograph Spectrograph
Plane Input Output

osew -
Lenslets pﬁ‘g@g | n:’:p:r = 8 =8B

L‘%L‘j@g _9; " B a 0
[.J[‘JL.] B B B B

-
Lenslets ---.
+ Fibres -.. Fibres
—>
N
‘ *

s

s

Slicer
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*E@& Flavors of spectrographs: Integral Field

- MUSE: Field of view: 60”x60; “pixel” size 0.2”; 1152 “slices”;
Resolution ~ 2500; 480 nm —> 930 nm, 24 spectrographs, 48 spectra
each.

— b1 Il = B 15



Getting the spectra you need

ES+
0
+

- Spectral range: must contain the features you need (+ redshift /
radial velocity) or enough features of the type you need

« Resolution: sufficient to resolve otherwise blended features / to
resolve the radial velocity you need

. Slit length: is the source extended? Do you need a good sky
subtraction? (a.k.a. spatial resolution, see also “number of
spectra”)

- Signal-to-noise: adequate to detect / measure features of strength
X with Y uncertainty (may correlate w. available features number)

- Number of targets/spectra: how many do you need for the science
goal? Quality vs. quantity? Is multiplexing viable? Time sampling
needed? Spatial sampling needed (see also “slit length”)?

—llkmc=11NE 0] Bl == t= Bl 2K
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Res. Intens.
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Res. Intens.
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Flux vs. wavelegth

N~ ™ o < N

B - L ™ < @ 7]
o o o o o

— ~— o o o o ]
o o o o o

| 0 © © © © —
™ o\ o\ o\ o\

B o\ 0 To) © <t |
L0 ~— Lo (op] (48]
L0 © ™ 52! =

B X X X Q N ]

B < < < < < _

7T AR, P TR """v“'w‘v"‘v*«,,““"“'" AR ot

| \/ \ | \/‘ |

/
| / _
N SN N T T N T T T T T T T T T T T T T T T T T U A T O T T N T A M N N M M A A N A B B O
421.5 421.6 421.7 421.8 421.9 422.0

wavelength (nm)



Res. Intens.

Flux vs. wavelegth
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+
| A
. S/n, spectlal lesolution, and sampling are M ri\ 4

the three main parameters defining
spectral quality.

- They set the uncertainty with which
features can be measured: lower resolution
) . ) ~/\J J
requires higher S/N to achieve same result. \

- Optimal- or over-sampling must be mantained. Higher sampling
decreases S/N per pixel but more fitting points compensate for it.

- Same for S/N and resolution (@optimal sampling): lower R —> higher
S/N but just enough to compensate for loss of line strength.

- Be careful about blending!!
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0 S/N vs. resolution

. I | I | | ] 1 | I -l I | I | 1 l

- S/n, spect
the three
spectral q

- Theysett
features c
requires h

08—

- Optimal- o
decreases
07
« Same for S
S/N but jut

- Be careful [
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Flux vs. wavelegth
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Flux vs. wavelegth
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0 Spectroscopy Choices Confusogram

Detector
Space

Telescope
Time

i
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0 Spectroscopy Choices Confusogram

Slit Length

Detector
Space

Time
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0 Spectroscopy Choices Confusogram

Slit Length

Detector
Space

Time
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0 Spectroscopy Choices Confusogram

Detector
Space

Telescope
Time
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0 Spectroscopy Choices Confusogram

Detector
Space

0
5’\%(\3\ :
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0 Spectrograph data reduction

Bias subtraction: detector calibration to remove readout bias, same as for
imaging.

- Order/slitlet trace: Position of orders/slits centers across wavelength on the
detector are traced and stored.

- Flat-field correction: through-spectrograph flat field used to correct for
illumination variations (blaze, vignetting) and pix-to-pix inhomogeneity. Per-
order (-slitlet).

- Wavelength calibration: (per-order) wavelength values along dispersion
direction determined via known emission-line spectrum (Th-Ar lamp, Fabry-
Perot etalon, Laser Frequency Comb), wavelength solution computed, per
order/slitlet and at different points along slit

« Science spectrum extraction: using defined spectrum geometry science
spectra are extracted, rectified, flat-fielded, wavelength calibrated and
resampled. If echelle, orders are merged. Background (“sky”) is subtracted
from slit edges / sly fiber(s) if LSS, Echelle

—llkmc=11NE 0] Bl == t= Bl 2K
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0 Spectrograph data reduction

« Long Slit Flat Field frame

« Long Slit Wavelength
Calibration (ThAr) lamp frame

« Long Slit Science frame
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0 Spectrograph data reduction

« MXU Flat Field frame
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 Echelle spectra require order
tracing because orders are

i i SR ST tilted, and often curved. FF &
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Spectrograph data reduction

- Positionable fiber-fed (FLAMES) Flat Field frame: single-
order spectra, flat field, from the 131 fibres
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Thank you!



