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OverviewOverview
1967 1998

• After their discovery in 1967, ~2000 pulsars  have been identified in radio.

P = 1 5ms - 10 sP = 1.5ms 10 s
dP/dt = 10-20 – 10-11 s s-1 >0 spin down

• Associated with fast spinning Isolated Neutron Stars
(INSs) born in SN explosions (Pacini 1968, Gold 1968) 

• Progenitors of 8-20 MSProgenitors of 8 20 MSun

• RNS≈10 km, MNS≈1.4 Msun, ρNS≈1014 g cm-3

20+mil/cm3=1/10 ρNS



The Magnetic Dipole ModelThe Magnetic Dipole Model

Magnetic dipole loss Rotational energy loss

where: I= 1045 g cm2

R = 10 km
M = 1 44 Ms

Magnetic dipole loss Rotational energy loss

If dΏ/dt = k Ώn  and  n=3

M  1.44 Ms

Braking Index

If Ώo << Ώi  

Dipole Magnetic field

Characteristic Age



The “HR diagram” of Radio Pulsars (“PPdot”)The HR diagram  of Radio Pulsars ( PPdot )

If a pulsar is alone

B

Age

Accretion driven spin-up

f p
in the graveyard 
is lost!

“recycled”
ms-pulsars

…. but, if it has 
a companion it can
escape!



The common Neutron Star picture (so far)The common Neutron Star picture (so far)

• Radio sources

• Powered by rotation

• Persistent and stable emitters 

• Crab is a prototype of young NSsp yp y

• Old NSs have low magnetic fieldsg



Multi-λ Observations of PulsarsMulti λ Observations of Pulsars
•Multi-λ observations opened new ways to search for INSs

•Some radio pulsars were first detected at high energies and only later in radiop g g y

• An INS can manifest ONLY at λ λ different than radio

• Identification of peculiar INSs, unnoticed otherwise

•The case of Geminga, the first radio-quiet INS, identified in γ-rays



The “other” INSs
• Other radio-quiet INSs were then discovered in X/γ-rays

• However, different INS flavours were unrecognized yet 

Hyper-Magnetic
Neutron Stars

The other  INSs

, g y

Radio Active

Radio Pulsars

Old Neutron Stars 
with 

Thermal Emission
Radio Quiet INSs

Radio Quiet
Enigmatic 

Neutron Stars 
in

SNR

Radio Quiet

SNRs



Why Radio Quiet?y Q
• Unfavorable radio beam geometry (To Beam or not To Beam ?)

• Radio Emission has decayed because the NS has moved to the Graveyard

• Radio Emission is suppressed (e.g. by accretion from ISM or a debris disk)

• NS born in the graveyard, as a very slow rotator with a very low spin-down rate

• May be indeed radio active but intrinsically very faint

• May be radio active but not persistent 



Hyper-Magnetic Neutron Stars
(a k a  Magnetars)(a.k.a. Magnetars)
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The Soft Gamma Ray Repeaters (SGRs)The Soft Gamma Ray Repeaters (SGRs)
• March 5th 1979:  γ-ray burst from the LMC direction (Lγ ~ 1045 ergs s-1 )

8 s

• Recurrent  NOT like the known GRBs

• Discovery of 8s period in the light curve decay 

• Associated to the N49 SNR• Associated to the N49 SNR

• Pulsations + SNR   Neutron Stars 2000 km/s

• Slow pulsar + young SNR very fast spin down



The Discovery of New SGRsThe Discovery of New SGRs

1979 March 5th

1998 June 15h

~7 5s (Kouveliotou et al 1998)

~6.4s (Woods et al. 1999)

1979 January 7th

1998 Aug  27th

~7.5s  (Kouveliotou et al. 1998)

1979 March 14th
~5s (Hurley et al. 1998)

All known SGRs are found to pulsate The Neutron Star hypothesis settles!



Timing Parametersg
• Pulsating X-ray counterparts detected. Steady. 

• X ray timing yielded the period derivative   hence: 
SGR 0526-66

• X-ray timing yielded the period derivative,  hence: 
(i) the age , (ii) the B-field and (iii) the rotational 
energy loss

• L ~ 1035 ergs/s >> dE/dt  X ray emission not powered by the NS rotation • LX ~ 1035 ergs/s >> dE/dt  X-ray emission not powered by the NS rotation 

• X-ray spectra: BB + PL 

• What kind of NS ??

NAME P dP/dt dE/dt B Age SNR
(s) (10-11 s s-1) (1034 ergs s-1) (1014 G) (kyrs)

SGR 0526-66 8.0 6.6 0.5 7.4 1.9 N49

SGR1627-41 6.4 - - - -

SGR1806-20 7.5 8.3 0.77 7.8 1.4

SGR1900+14 5.2 6.1 1.7 5.7 1.3



The Anomalous X-ray Pulsars (AXPs)The Anomalous X ray Pulsars (AXPs)
• Why “Anomalous”? 
• Narrow P distribution

Mereghetti & Stella (1995)

• Long P wrt isolated XRPs Binary 
• Lx ~ dM/dt Binary

However,

• No optical counterparts very low mass companions (if any)• No optical counterparts very low mass companions (if any)

• No evidence for a companion (X-ray eclipses, Doppler shifts) G109.1-1.0

• Steady spin down, not spin up as expected in XRB pulsars

C i id t ith SNRs  mm  f  XRBs ( l  SS433)

1E 2259+586

• Coincident with SNRs, uncommon for XRBs (only SS433)



Timing Parametersg
• Periods, spin down, age, magnetic fields, all make them similar to SGRs

• LX ~ 1035 ergs/s >> dE/dt  X-ray emission not powered by the NS rotation LX  10 ergs/s  dE/dt  X ray emission not powered by the NS rotation 

• X-ray spectra: BB + PL 

NAME P 
(s)

dP/dt 
(10-11 s s-1)

dE/dt
(1034 ergs s-1)

B
(1014 G)

Age 
(kyrs)

SNR Notes
• However, bursting is very rare (in X-rays only). No γ-ray activity (quiescent?)

CXOU J010043.1-721134 8.0 1.88 0.14 3.9 7

4U 0142+61 8.7 0.20 0.012 1.3 70

1E 1048.1-5937 6.4 1.3 0.19 3.9 4.3 bursting

CXOU J164710 2 455216 10 6 <20 <0 3 <15 >0 8 transientCXOU J164710.2-455216 10.6 <20 <0.3 <15 >0.8 transient

RX J170849-400910 11.0 1.9 0.056 4.7 9.0

XTE J1810-197 5.5 1.5 0.35 2.9 5.7 transient

1E 1841-045 11.8 4.2 0.1 7.1 4.5 G27.4+0.0

AX J1844-0258 7.0 - - - - G29.6+0.1

1E 1547.0-5408 2.0 2.3 10 2.2 1.4 transient

1E 2259+586 7.0 0.05 0.0057 0.60 220 G109.1-1.0 bursting



Both AXPs and SGRs have high inferred magnetic fieldsg g

SGRs+AXPs4 1013 G

B

Age



The Magnetar Model g
(Duncan & Thompson 1992; Thompson & Duncan 1995)

M t  M (ti  )t• Magnetar = Magne(tic s)tar

• Radio emission inhibited by the high magnetic field (> 4.33 1013 Gauss)

• The magnetic braking slows down rapidly the neutron star rotation

• X-ray emission powered by the magnetic 
field decay field decay 

• Star quakes in the crust produce twists of  
the magnetic field which energize particlesg g p
in the external magnetosphere bursts



A Direct Measure of the Magnetic Fieldg
• In the meantime,  X-ray cyclotron absorption lines have been detected in

SGR 1806-20 (Ibrahim et al. 2002; 2003)

• B  ~ 1015 G (proton cyclotron), vs B ~ 8 1014 G from the spin-down

• Features detected in outburst ONLY difficult to monitor

• Tracers of some kind of change in the magnetic activity during the outburst



Accretion modelsAccretion models
• Accretion from a very low mass companion or from a fallback disk

• Optical/IR observations are important to test different modelsOpt cal/IR observat ons are mportant to test d fferent models

SGR1806SGR1806--2020RX J170849RX J170849--4009104009101E 1048.11E 1048.1--59375937 XTE J1810XTE J1810--197197

Israel+ (2003,2004,2005)
• IR emission most likely from the Magnetar itself or from a fossil disk 

• From disk models rdisk » rcorotation

• No disk-magnetar interaction 

disk does not power the X-ray emissionp y
does not affect the spin-down measured B-field genuine 



Evidence of a Fossil Disk (?)Evidence of a Fossil Disk (?)

• The existence of disks around a NS has been supported by  
recent Keck and Spitzer observations of the AXP 4U0142+61p

(Wang+ 2006)



Old Neutron StarsOld Neutron Stars
with 

S f  Th l E i iSurface Thermal Emission
(a.k.a. X-ray Thermal INSs)
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OverviewOverview
• 7  nearby INSs with purely thermal X-ray emission discovered by ROSAT
• LX ~ 1030-31 ergs/s

INS id ifi i  ifi d b   F /F• INS identification certified by extreme FX/Fopt

• Age > 106 years
N  NR  ld• No SNR association old

• No magnetospheric emission old
• Old No longer radio active  

• Originally thought to be the tip of the 
iceberg of the radio-dead pulsar population 

• X-rays from ISM accretion



Cooling Neutron Stars ? Cooling Neutron Stars ? 
• Optical identifications proper motions & parallaxes velocity wrt ISM

• Cooling favored vs ISM accretion 

• Optical SED is thermal with BBopt cooler  than BBX (Mignani+ 2004)

• NS thermal map heat transfer in the NS interior compositionNS thermal map heat transfer in the NS interior composition

• Distance + T  NS radius M/R EOS



Or Evolved Magnetars ? g
• Pulsed X-ray emission

P i d   t L  dE/dt B  t• Periods ~ magnetars + LX ≈ dE/dt + B ≈ magnetars

• Much less energetic wrt the Magnetars
• No magnetar like behavior• No magnetar-like behavior
• No γ-ray emission. X-ray emission is steady 

NAME P 
(s)

dP/dt 
(10-11 s s-1)

dE/dt
(1034 ergs s-1)

B
(1014 G)

Age
(kyrs)

Notes
(s) (10-11 s s-1) (1034 ergs s-1) (1014 G) (kyrs)

RXJ 1856.5-3754 10.0 0.003 0.0003 0.15 4000 LX >> dE/dt

RXJ 0720.4-3125 8.4 0.007 0.00047 0.56 1900 LX >> dE/dt

RXJ 1308.6+2127 10.3 0.011 0.00039 0.46 1500 LX ≈ dE/dtRXJ 1308.6 2127 10.3 0.011 0.00039 0.46 1500 LX  dE/dt

RXJ 1605.3+3249 6.88 (?) - - 0.8 - -

RXJ 0420.0-5022 3.45 - - 0.66 - -

RXJ 0806.4-4123 11.4 - - 0.86 - -

RXJ 214303.7+065419 9.43 - - ~1 - -



Magnetars4.33 1013 G

++ XTINSsB + XTINSsB

Age

+



Enigmatic Neutron Stars in 
Supernova Remnantsp

(a.k.a. Compact Central Objects – CCO )
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Overview
• 8 X-ray sources detected at the center of SNRs.  Pinpointed by EINSTEIN, 

then by ROSAT,  got the limelight with CHANDRA and XMM

EINSTEIN CHANDRA XMMEINSTEIN CHANDRA XMM

• Not yet detected in radio. Unfavorable Beaming ?? 

• X-ray spectra: 2 BBs (≈ 106 K). NO magnetospheric activityy p ( ) g p y

• Young (~ kyrs) from SNR ages, but not from X-ray spectra. No γ-ray emission.

• Nature of CCOs is unclear



Timing Parametersg
• Not pulsating in X-rays, apart from two (possibly four)

• Periods might look somehow longer than expected for young pulsars• Periods might look somehow longer than expected for young pulsars

• For only one case period derivative measures have been obtained (uncertain)

NAME P 
(s)

dP/dt 
(10-11 s s-1)

dE/dt
(1034 ergs s-1)

B
(1014 G)

Age
(kyrs)

Notes

RX J082157.5-430017 0.22(?) - - - 3 Puppis A

RX J085201.4-461753 - - - - 2 Vela Jr.

1E 1207-5209 0.424 <0.000016 <0.013 <0.0033 700 G296.5+10.0

CXOU J16013.1-513353 7.5 (?) - - - - G330.2+1.0

1E 16148-5051 - - - - 2 RCW103

CXOU J171328.4-394955 - - - - 10 G347.3-0.5

CXOU J171801.0-372617 - - - - 2 G349.7+0.2

CXOU J185238.6+004020 0.105 <0.00002 <0.7 <0.0015 7 Kes 79

CXOU J232327 9+584843 0 3 Cas A

• Slowly born, low-magnetic, neutron stars (Gotthelf & Halpern 2007)
CXOU J232327.9+584843 - - - - 0.3 Cas A



The peculiar CCO in RCW103The peculiar CCO in RCW103

• Long term X-ray variability measured with all X-ray satellites since ROSAT 

6 h  i d l l  d t t d b  XMM (D  L  2006) • 6 hrs period clearly detected by XMM (De Luca+ 2006) 

• Accreting NS? Or ultra slowly spinning NS (De Luca+ 2006)?

• Candidate low-mass (~ 0.1 Msun) M dwarf companion star
( Mignani+ 2004)

Not confirmed by NACO observations (Mignani+ 2007;• Not confirmed by NACO observations (Mignani+ 2007;
De Luca+ 2008). Only very late companion (or disk) allowed



Optical/IR ObservationsOptical/IR Observations
HST/ACS VLT/NACO VLT/NACO

CCO in G296.5+10.0 CCO in Vela Jr. CCO in G343.3-0.5

• Candidate optical counterpart for the G296.5+10 CCO,  ruled out (Mignani+ 
2007a) 

• Candidate IR counterpart identified  for the Vela Jr CCO, compatible with a 
low-mass star (>M) or a debris disk (Mignani+ 2007b)

• No obvious counterpart for the G343.3-0.5 CCO. Best candidates also 
compatible with disks (Mignani+ 2008). 
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High-B Radio Pulsarsg
(HBRPs)
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Overview
• A few (~40) ordinary radio pulsars identified with B>1013 G

• 5 with B>4.33 1013 G, i.e., the critical quantum field value above which radio 
i i  h ld b  demission should be suppressed

• These High-B radio pulsars should NOT expected to be radio pulsars at all !

NAME P 
(s)

dP/dt 
(10-11 s s-1)

dE/dt
(1034 ergs s-1)

B
(1014 G)

Age 
(kyrs)

PSR J1119-6127 0.4 0.41 250 0.41 1.7

PSR J1718-3718 3.3 0.15 0.16 0.74 34

PSR J1734-3333 1.17 0.22 5.6 0.52 8.1

PSR J1814-1744 3.97 0.074 0.047 0.55 84.8

• Only two detected in X-rays. LX~1032-33 ergs/s

PSR J1847-0130 6.70 0.127 0.017 0.93 83.3

• X-ray spectra: BB !!



Magnetars4.33 1013 G

++ XTINSs

HBRPs
B

+ XTINSs

Age

+



HBRPs vs MagnetarsHBRPs vs Magnetars
• HBRPs do not show magnetar-like behavior

Not transient. Not bursting.  No γ-ray emission. LX < dE/dt

• HBRPs could be a different magnetar manifestation, or  magnetars in a 
different evolutionary stage

OR-OR-
• Magnetic fields from spin down might be affected by torques from a disk 

A disk sh ld b  d t t bl  i  th  IR b t l  pp• A disk should be detectable in the IR but only upper
limits so far (Mignani+ 2006,2007c)

VLT/NACO
100% disk torque100% disk torque
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OverviewOverview
• 10 RRATs discovered (Mc Laughlin+ 2006), all in the Galactic Plane

• F 1400 MHz ~ 0.1-3.6 Jy among brightest radio sources in the sky

• Nature of RRATs is unclear (Binary ? Isolated ?)

• Proposed to be radio pulsars close to (or just beyond) the end of their life 
cycles (Zhang+ 2006)

• Only one RRAT detected in X-rays so far (Mc Laughlin+ 2007). 

• Lx ≈ 3 1033 erg s-1 g

• X-ray spectra: BB (≈ 106 K)



Timing Parametersg
• P = 0.4-7 s , 3 with measured dP/dt
• Young and Old.
• L > dE/dt + B ~ 0 5 1014 G Candidate magnetar?• LX > dE/dt + B ~ 0.5 1014 G Candidate magnetar?

NAME P 
(s)

dP/dt 
(10-11 s s-1)

dE/dt
(1034 ergs s-1)

B
(1014 G)

Age
(kyrs)

Notes
(s) (10 s s ) (10 ergs s ) (10 G) (kyrs)

J0848-43 5.97 - - - -

J1317-5759 2.64 0.0012 0.00269 0.058 3330

J1443-60 4.75 - - - -

J1754-30 0.42 - - - -

J1819-1458 4.26 0.0576 0.0249 0.5 117 LX > dE/dt

J1826-14 0.77 - - - -

J1839-01 0.93 - - - -

J1846-02 4.47 - - - -

J1848-12 6 79 - - - -J1848-12 6.79 - - - -

J1913+1333 0.92 0.000787 0.0394 0.0272 1860



Magnetars4.33 1013 G

High-B PSRs
* +B

**

RRATs

++ XTINSs

Age
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Radio Active – Radio Quiet INSs
(?)(?)
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Transient Radio Emission from MagnetarsTransient Radio Emission from Magnetars

• Pulsed radio emission detected from two transient 
AXPs XTE J1810-197 (Camilo+ 2006) and
1E 1547.0-5408 (Camilo+ 2007)

• Radio emission from XTE J1810-197 80-95% 
polarized  (Kramer+ 2007)

• In both cases radio emission observed after 
transition to high state (argues against accretion)

• Magnetic field rearrengement after X-ray 
brightening responsible for radio emission turn-on. g g p



Steady Radio Emission from a MagnetarSteady Radio Emission from a Magnetar
• Radio pulsations detected for: 

• 1E 2259+586 (Malofeev+ 2005)
• F111MHz = 35 ± 25 mJy
• P = 6.97 s;  dP/dt = 0.48 10-12 s s-1;



Steady Radio Emission from two XTINSsSteady Radio Emission from two XTINSs
• Radio pulsations detected for: 

• 1RXS J214303.7+065419 (Malofeev+ 2007)
• F111MHz = 60 ± 25 mJy
• P = 9.43 s;  dP/dt = -1.5 ± 2.2 10-12 s s-1 (period evolution unconstrained !); (p )

• 1RXS J130848.6+212708 (Malofeev+ 2007)
• F111MHz = 50 ± 20 mJyF111MHz mJy
• P = 10.31 s;  dP/dt = 12.9 10-12 s s-1 (consistent with the X-ray one)



However …However …
• We observed 1RXS J214303.7+065419  from Parkes @ 1.4 GHz but

we did not detect radio emission down 0.02 mJy kpc2 (Rea+ 2007) 
• Very steep radio spectrum or false detection ?• Very steep radio spectrum or false detection ?
• Difficult to check. Very few radio telescopes operate at very low frequencies



C l i  d P iConclusions and Perspectives
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Open Pointsp

• High Energy observations have unveiled a variety of different 
INSs flavours, with a complex phenomenology, p p gy

1. What makes all these INSs different ?

2. What determines these differences? The birth event? The parent 
star? The evolution? The environment? 

3. How are different INSs classes related  ?

4. Are they part of a common evolutionary scheme?

• Addressing these points is critical to understand the endpoints of Addressing these points is critical to understand the endpoints of 
massive stellar evolution 
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The Road Map
• Assess NS nature: 

T  s t t th  s m l  (is l t d  bi  disk)

p

To sort out the sample (isolated, binary, disk)

• Multi-λ Phenomenology: 

To study the physics and find similarities/diversities

• INS Archeology:INS Archeology

To understand origin, formation, and evolution 

• Multi-λ Identifications:

To enlarge the sample 



Thank you !


