ORGANIZED by D.Mininni (PUC), D.Alloin (ESO),
MT.Ruiz (UChile),
G.Pietrzynski (UConcepcion), and sponsored
by the FONDAP Center for Astrophysics,
European Southern Observatory, Princeton/
Catolica Universities, Fundacion Andes,
SOCHIAS, and NRAO, the goal of this
series of Schools (http://www.astro.puc.cl/
~school/) is to train the young generation of
astronomers on different topics. The School
format has been chosen in order to allow a
deep approach of the selected themes, as
well as to maximize exchanges between the
invited lecturers and the attendees.

For this School on Extrasolar Planets
and Brown Dwarfs, held in Santiago on 15-
19 December 2003, the four main lecturers
were (see photo): Jill Knapp (UPrinceton),
Michel Mayor (UGenève), France Allard
(ENS Lyon), and Scott Tremaine
(UPrinceton).

Since the mid-90s, the field of brown
dwarfs and extrasolar planets has bloomed in
a spectacular fashion, both on the observa-
tional side and on the modeling side. Rather
than report on all the advances beautifully
presented at the School, let us examine some
of the points which remain in the to-do lists
shown by the different lecturers.

First of all, we shall stick, for the time
being, to the definition adopted by the IAU:
• “star”: mass above 80 M_{Jup} H-burning
core
• “brown dwarf”: mass between 80 and
13 M_{Jup}, D burning core, large variation of
the surface temperature from an M dwarf
(3,000 K), to a T dwarf(< 1,300 K)
• “planet”: mass less than 13 M_{Jup}
One notices that this definition is not
linked to the object formation scenario.

The number of objects known so far are:
about 120 planets (at distances up to 30 pc)
and about 400 brown dwarfs (at distances up
to 200 pc).

On the front of observing:
• Brown dwarfs: Jill Knapp and other
contributors at the School reported that it is
a “tough job” to find them (intrinsic lumi-
nosity less than 2 \times 10^{-6} solar luminosity and
(V-K) ~ 10). Exploiting the all-sky surveys
available today, more than one million
objects have been searched for: only 60 L
dwarfs have been found... Good progress
have been made in the M/L/T brown dwarf
classification (on the basis of their spectra).

To-do list: increase the sample of
brown dwarfs, to test models, make a proper motion sur-
vey in the NIR, formation sce-
cnario: ascertain the low mass
end of the stellar IMF, the rela-
tion planets = brown dwarfs?

• Extrasolar planets:
Michel Mayor and other con-
tributors reported that it is as
well a “tough job” to find planets
(light contrast star/planet around 10^{10}, request for 1 m/s
velocity precision). Radial
velocity searches have so far
provided all known planets (~120), except
for one. About 2000 stars in the solar vicini-
ty are currently monitored (at distances less
than 30 pc). Among the 120 known planets,
10 are multiple planet systems.

The use of other methods for planet dis-
cover, such as transit, reflected light, micro-
lening, etc... is in progress.
To-do list: understand the amazing depend-
ence on the metallicity of the parent star,
investigate the brown dwarf desert and
investigate its implications on the formation
scenarii, increase the sample of known plan-
ets up to 10^4, so that statistical properties can
be derived with some confidence: at the cur-
rent rate of planet discovery (about 10/year),
this will take 10^5 years!! Can we wait that
long?

It was also extremely interesting to hear
about intrinsic limitations in planet searches:
acoustic modes of the parent stars, spots of
the parent stars, and in the case of multiple
planet systems, the difficulty in finding a
unique solution in the decomposition of the
radiation velocity curve.

• Of course, a wealth of groundbased
and space tools for discovering planets and
brown dwarfs were discussed (incomplete
list!): HARPS (1m/s precision), optical and
NIR interferometry, adaptive optics -in the
future multi-conjugate adaptive optics,
COROT, KEPLER, ALMA for protoplanet-
ary discs, SIM, GAIA, GEST, OWL and
ELTs in general.

On the front of modeling:
• The atmospheres of brown dwarfs
were extensively discussed by France
Allard. They are rather well understood and
modeled (thanks, among other factors, to the
tremendous increase in computational
power).
To-do list: improve the opacities, consider
more realistic dust grains (composition, shape)

• Dynamics, kinematics, formation sce-
narii: a large panel of fascinating problems
were discussed by Scott Tremaine and other
contributors at the School.
To-do list (a subset...): elucidate the “mys-
tery” of the planetesimal growth from cm
size to km size, understand the physics hid-
den in the term “viscosity” in protoplanetary
discs, understand the “peculiarities” of the
Solar system: its ellipticity, the location of
Jupiter, the origin of chondrules, formation
scenarii: collapse versus coagulation of
planetesimals.

• Some other interesting questions con-
cerning the modeling of planetary systems
were raised: are closed-box models valid?
Given that half the mass of the Solar system
is in small bodies, taking into account only
massive planets to study the dynamics of
planetary systems might be misleading; how
to disentangle evolution (such as planet
migration) from intrinsic properties?; what is
the role of star multiplicity in the formation
of planetary systems?; which is the fraction
of lost planets?

In conclusion, an enlightening School,
which took place in the grounds of the
Observatory of Cerro Calan in the heights of
Santiago. About 80 attendees (more than
half of them from South America) enjoyed
the lectures, the discussions in the shadow of
the trees, and contributed to the friendly
atmosphere. Finally, the School dinner at
Casa Piedra allowed everyone to admire a
beautiful sunset on the rio Mapocho.