With the arrival of the second generation instrument GRAVITY, the Very Large Telescope Interferometer (VLTI) has entered a new era of optical interferometry. This instrument pushes the limits of accuracy and sensitivity by orders of magnitude. GRAVITY has achieved phase-referenced imaging at approximately milliarcsecond (mas) resolution and down to ~100-microarcsecond astrometry on objects that are several hundred times fainter than previously observable. The cutting-edge design presented in Eisenhauer et al. (2011) has become reality. This article sketches out the basic principles of the instrument design and illustrates its performance with key science results obtained during commissioning: phase-tracking on stars with K ~ 10 mag, phase-referenced interferometry of objects fainter than K ~ 17 mag, minute-long coherent integrations, a visibility accuracy of better than 0.25%, and spectro-differential phase and closure phase accuracy better than 0.5 degrees, corresponding to a differential astrometric precision of a few microarcseconds (mas).

GRAVITY was developed in collaboration between the Max Planck Institute for Extraterrestrial Physics, LESIA of Observatoire de Paris/CNRS/UPMC/Université Paris Diderot and IPAG of Université Grenoble Alpes/CNRS, the Max Planck Institute for Astronomy, the University of Cologne, CENTRA—Centro Multidisciplinar de Astrofísica (Lisbon and Porto) and ESO.

GRAVITY was shipped to Paranal in July 2015 (Figures 1 and 2). After roughly one year of installation and commissioning, the instrument was offered to the scientific community for the first time in October 2016. The observations we report here include objects and results that were out of reach for any previous interferometric instrument. Most notable are observations of the Galactic Centre black hole Sagittarius A* (Sgr A*) and the nearby star S2 (Figure 3); the microquasar SS 433, and 50-microarcseconds accuracy astrometry of the M-dwarf binary system GJ 65. More details about GRAVITY and early commissioning results can be found in GRAVITY Collaboration (2017 a, b, c and d).

Phase referencing optical interferometry for the VLTI

As part of GRAVITY, each of the four 8.2-metre Unit Telescopes (UT) has been equipped with a Coude Infrared Adaptive Optics (CIAO) system, which corrects atmospheric perturbations and stably injects the light from two adjacent astrophysical objects into optical fibres. Two fibres per telescope feed two integrated optics beam combiners: one for each object. Each beam combiner pairwise combines the telescopes and samples the resulting six fringe patterns at four phase-shifted locations. Those 24 outputs are dispersed by a spectrometer and imaged onto a detector. One of the two beam combiners serves as a fringe-tracker. It is equipped with a low-resolution spectrometer and a fast camera optimised to measure the fringe phase at kHz frequency. The fringe-tracker measures and corrects atmospheric piston perturbations in real time, which permits long integration times on the second beam combiner.

The active stabilisation of the science channel allows the integration time to be increased from a few milliseconds (atmospheric coherence time) to hundreds of seconds. The resulting leap in sensitivity opens up a wide range of applications, from very faint targets at low spectral resolution to moderately bright targets at high spectral resolution. Furthermore, GRAVITY provides dual-field astrometry by precisely measuring the optical delay between two distinct objects with a dedicated metrology system. This yields object separations with an exquisite accuracy of a few tens of µas.

Both single-field (where a beam splitter injects the light from a single object into the two fibres) and dual-field modes are offered to the community, with a spectral resolution up to 4000 and a limiting magnitude of K = 8 in single-field mode using the 1.8-metre Auxiliary Telescopes (ATs) and K = 10 on the 8-metre UTs depending on weather conditions. In dual-field mode, the offering limited magnitude is 0.5 magnitudes fainter on the fringe-tracker, and 3.5 magnitudes on the science channel. Dual-field astrometry is still under commissioning. The first observations show residuals as low as 50 µas when following objects over several months.
Dynamics around the Galactic Centre black hole

Probing the gravitational potential around the Galactic Centre black hole Sgr A* (for example, Genzel et al., 2010) has been the primary science case and design driver of the instrument, hence the name GRAVITY (Paumard et al., 2008). The stellar orbits in the Galactic Centre are thus far perfectly Keplerian and give the best estimate of the black hole mass and its distance from Earth. The S stars within one arcsecond of Sgr A* provide ideal test particles, probing space-time in the vicinity of the black hole. With GRAVITY we want to detect general relativity effects in the orbits of those stars as deviations from Keplerian motion. S2 is the best-suited star for this experiment known so far.

Sgr A* is also surrounded by an inflow/outflow region known to exhibit flares: outbursts of energy that occur approximately once per day. The short timescale and large-amplitude brightness variations indicate that the flaring occurs a few Schwarzschild radii from the central mass. If confirmed this means the flares are additional probes for measuring the gravitational potential near the event horizon.

The Galactic Centre observations provide a good illustration of the various GRAVITY subsystems: the very bright M1 supergiant GCIRS 7 is picked up by the star separators to feed the CIAO infrared wavefront...
The continuous monitoring during 2017 provides us with the astrometric baseline necessary for the detection of general relativistic deviations in S2’s orbit. Only GRAVITY and the VLTI will allow the detection of S2’s Schwarzschild precession soon after the pericentre flyby in spring 2018.

As we anxiously await the pericentre approach, we are constantly improving the instrument calibration and data reduction. Based on signal-to-noise calculations we are confident that in the near future, the observations will reach $K \sim 19$ sensitivity and contrast ratios of a few hundred. This additional increase in sensitivity will hopefully permit the detection of faint stars — which are predicted to exist based on stellar density extrapolations — with orbital periods lasting a few years or even a few months. If found, these stars could allow the detection of higher-order relativistic perturbations such as Lense-Thirring precession and frame dragging, and ultimately provide a direct measurement of the black hole’s spin.

Eta Carinae (η Car) is one of the most intriguing luminous blue variables in the Galaxy. Models of its radiation from infra-red to X-ray wavelengths imply that its core contains a binary star. The stellar wind from the secondary star creates a cavity inside the wind from the primary. Using the array of ATs, we imaged η Car with GRAVITY in February 2016. The high spectral resolution mode ($R = 4000$) allowed us to map η Car’s wind-wind collision zone in atomic hydrogen (Brγ at 2.1661 μm) and, for the first time, in...
Towards dual-field astrometry

The dual-field design of GRAVITY paves the way for interferometric narrow-angle astrometry (Shao & Colavita, 1992). Differential phase measurements between the fringe-tracker and science channels remove most sources of systematic uncertainty. However, one needs to measure the differential optical path delay between various systematic errors in order to achieve the design goal of 10-microarcsec accuracy.

Accretion and ejection mechanisms in the binary T Tauri system S CrA

We have observed both components of the binary system S Coronae Australis (S CrA North and South) using GRAVITY and the UT array. This system (130 pc from Earth) consists of an early G-type primary (K = 6.6) and an early K-type secondary star (K = 7.3). Each component is a classical T Tauri star. With an apparent separation of 1.4 arcseconds, we have been able to employ the dual-field mode, thereby doubling the flux in each channel compared to single-field observations. We swapped between the two components to observe both at high resolution (R = 4000).

August 2016 and October 2017. Our measurements (Figure 5) show an unprecedented accuracy of 50 microarcseconds, and we detect the orbital acceleration. Further observations will be able to detect Jovian planets around nearby M-dwarf binaries such as GJ 65. The detection of Earth-like planets requires improved modelling and correction of the various systematic errors in order to achieve the design goal of 10-microarcsecond accuracy.

A high-mass X-ray binary at microarcsecond accuracy

The high-mass X-ray binary (HMXB) BP Cru consists of a slowly rotating neutron star (GX 301-2) accreting from the wind of its blue hypergiant companion (Wray 977; Kaper et al., 2006). Like most X-ray binaries, the orbital system size

atomic helium (He I at 2.0587 μm; Figure 4). The first and last image of each series reveal the continuum image of η Car, a compact structure of 5 milliarcseconds in size. This is the primary wind (Weigelt et al., 2016).

The GRAVITY data also confirm the presence of the wind-wind collision cavity observed with the VLTI instrument Astronomical Multi-BEam combineR, AMBER (Weigelt et al., 2016) at a velocity of ~275 km s⁻¹. The bright arc-like feature in the south-east, observed at blue-shifted velocities, could be part of the hot wind due to a shock between the cavity arms after the most recent periastron passage in 2014 (Madura et al., 2013). The HeI images show how ultraviolet photons from the secondary star ionize the wind from the primary. These images illustrate GRAVITY’s imaging capabilities, with six simultaneous baselines and the full K-band at high spectral resolution. It reveals the stellar and wind parameters of large stars like η Car, and ultimately predicts their evolution and fate.
The data reveal an extended (~ 4 R_\ast) and distorted wind around the donor star, as well as the possible presence of a gas stream previously predicted from the X-ray lightcurve (Leahy & Kostka, 2008). The GRAVITY phase errors of 0.2 degrees correspond to (< 1 mas) is smaller than the resolution of even the largest optical/near-infrared interferometers. However, using the technique of spectral differential interferometry, it is possible to obtain spatial information on much smaller scales of a few microarcseconds. BP Cru was observed with GRAVITY and the UTs in high spectral resolution ($R = 4000$) with a total on-source integration of 2100 s. The differential visibility and phase across the Br$_\gamma$ line of atomic hydrogen (shown in Figure 7) resolve the centroid shift and extension of the flux distribution as a function of velocity. The data reveal an extended (~ 4 R_\ast) and distorted wind around the donor star, as well as the possible presence of a gas stream previously predicted from the X-ray lightcurve (Leahy & Kostka, 2008). The GRAVITY phase errors of 0.2 degrees correspond to a...
The microquasar SS433.

The large-scale structure of the relativistic jets of SS 433 has been previously studied with radio interferometry using the Multi-Element Radio Linked Interferometer Network (MERLIN), the Very Long Baseline Interferometer (VLBI) and the European VLBI Network (EVN) (panels a and b). For the first time GRAVITY has spatially resolved the wind and redshifted (v/c ~ 0.26) emission lines from the baryonic jet. The K-band spectrum from GRAVITY shows several lines from the jet (shown in panel d) as red/blue for the receding/approaching jets in Brγ, Brδ and He I, as well as stationary lines from Brγ and He I. Differential visibilities and phases are seen across all lines (d), allowing models of the emission regions at sub-milliarcsecond scales (c).

References
Eisenhauer, F. et al. 2011, The Messenger, 143, 16
Genzel, R., Eisenhauer, F. & Gillessen, S. 2010, Rev. Mod. Phys., 82, 3121
Leahy, D. A. & Koskka, M. 2006, MNras, 384, 674

Notes
Principal authors: Thibaut Paumard, Oliver Pfuhl, Andreas Eckart, Karine Perraut, Wolfgang Brandner and Paulo Garcia.

First optical interferometry of a microquasar

The high sensitivity of GRAVITY allowed the first near-infrared interferometric observation of a microquasar at a sub-milliarcsecond scale. The well-known X-ray binary SS 433 (K = 8.2, V = 13.0) is the only source in the galaxy known to accrete persistently in excess of its Eddington rate. The super-critical accretion drives massive winds and powerful precessing relativistic jets (Fabrika, 2004).

With 80 minutes of on-source exposure time with the UTs in high spectral resolution, GRAVITY simultaneously resolved all of these components. The winds were seen in the continuum emission (partially resolved at a size of ~ 0.8 mas) with evidence for bipolar outflows seen in the stationary (i.e., non-jet) Brγ emission line. Differential interferometry at several redshifted emission lines (v/c ~ 0.26) revealed the spatial structure of the relativistic jets (Figure 8).

While the large-scale structure of the jets had previously been studied at radio wavelengths (Paragi et al., 2001), we have spatially resolved its baryonic jet emission lines (Margon et al., 1979) for the first time. The jet emission peaks surprisingly close to the binary, and is well-modelled with a resolved (~ 2 mas) intensity profile that is exponentially decreasing.

GRAVITY has entered the science phase

The results presented in this article are only selected examples of early science from GRAVITY. The wider community has benefited from GRAVITY’s performance since 2016, with two Science Verification runs in June and September and open-time operation since October 2016. With additional results from PIs outside of the consortium (Mérand et al., p. 16; Kraus et al., p. 45), The Messenger celebrates the dawn of a new era for optical interferometry.