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an overview of the design of NIRPS, its 
on-sky performance, its Guaranteed 
Time Observation programme, and its 
first scientific results.

Introduction

The discovery of the first exoplanet orbit-
ing a solar-type star (Mayor and Queloz, 
1995), and of the first transiting exoplanet 
(Charbonneau et al., 2000), stand as 
pivotal moments in astrophysics. The quest 
for nearby habitable worlds and evidence 
of biological activity beyond the Solar 
System has prompted the construction  
of powerful observatories such as Kepler 
(Koch et al., 2010), the Transiting 
Exoplanet Survey Satellite (TESS; Ricker 
et al., 2015), the James Webb Space 
Telescope (JWST; Gardner et al., 2023) 
and, very soon, ESO’s Extremely Large 
Telescope (ELT; de Zeeuw, Tamai &  
Liske, 2014).
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The Near-InfraRed Planet Searcher 
(NIRPS) is a high-resolution, near-
infrared spectrograph optimised for 
detecting and characterising exoplanets 
around low-mass stars, working in 
tandem with the High Accuracy Radial 
velocity Planet Searcher (HARPS). While 
HARPS set new standards 20 years ago 
with its metre-per-second-level precision, 
NIRPS follows this successful path, 
achieving even better precision at infra-
red wavelengths. This article presents 
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Figure 1. Left: schematic of the NIRPS frontend. 
Right: images from the guiding camera of a binary star 
(0.3 arcseconds separation) with the AO loop open 
(top) and closed (bottom). From Bouchy et al. (2025).
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the precision of RV measurements and 
significantly improves our ability to dis-
entangle planetary signals from stellar 
jitter noise. This article presents a brief 
overview of NIRPS, including its design, 
on-sky performance, initial results, and 
highlights from its extensive Guaranteed 
Time Observation (GTO) programme.  
For a more comprehensive description  
of NIRPS, readers are referred to Bouchy 
et al. (2025).

NIRPS+HARPS: a unique dual optical-
infrared precision velocimeter

NIRPS is a fibre-fed, highly-stabilised 
echelle spectrograph operating in the  
NIR and installed on the ESO 3.6-metre 
telescope at La Silla, Chile. The instru-
ment includes a frontend bonnette at the 
Cassegrain focus, linked via optical fibres 
to the cryogenic spectrograph in the 
coudé room. The frontend integrates an 
adaptive optics (AO) system to enhance 
efficiency and minimise the instrument’s 
size. As for HARPS, NIRPS’s spectrograph 
is housed in a thermally-controlled enclo-
sure to ensure optimal thermal stability.

advantages have driven the development 
of high-resolution NIR spectrographs, 
including GIANO (Oliva et al., 2012),  
the Habitable-zone Planet Finder (HPF; 
Mahadevan et al., 2012), the Calar Alto 
high-Resolution search for M dwarfs with 
Exoearths with Near-infrared and optical 
Échelle Spectrographs (CARMENES;  
Quirrenbach et al., 2014), the InfraRed 
Doppler (IRD) instrument (Kotani et al., 
2018), and SpectroPolarimètre InfraRouge 
(SPIRou; Donati et al., 2020).

The Near-InfraRed Planet Searcher 
(NIRPS), the newest addition to this suite, 
builds on the legacy of HARPS (Mayor et 
al., 2003) and the Echelle SPectrograph 
for Rocky Exoplanet and Stable Spectro-
scopic Observations (ESPRESSO; Pepe 
et al., 2021), while leveraging the infrared 
expertise and experience gained from 
SPIRou. Operating in tandem with HARPS, 
NIRPS provides an unparalleled optical-
NIR capability for precision velocimetry. 
This dual-wavelength approach enhances 

The rapid progress in exoplanet research 
over recent decades was driven largely 
by precision velocimetry and in particular 
the development of fibre-fed optical spec-
trographs like the High Accuracy Radial 
velocity Planet Searcher (HARPS; Mayor 
et al., 2003), which set new standards by 
achieving metre-per-second precision. 
Advances in large-format infrared detec-
tors, largely motivated by and developed 
for JWST, paved the way for a new 
generation of precision infrared spectro-
graphs tailored to studying low-mass stars. 
This context prompted the Universities  
of Montreal and Geneva, in collaboration 
with the Institute of Astrophysics and 
Space Science (Portugal), the Canaries 
Institute of Astrophysics (Spain), Grenoble 
Alpes University (France), the Federal 
University of Rio Grande do Norte (Brazil), 
and ESO, to initiate the development  
of an ‘infrared HARPS’ for the southern 
hemisphere.

Low-mass M dwarfs, which dominate the 
Milky Way’s stellar population (Reylé et al., 
2021), are excellent targets for exoplanet 
studies. Their small radii and masses 
amplify detection signals via radial velocity 
(RV) and transit methods, while their low 
luminosity means that habitable zones  
lie closer to the star, with orbital periods 
measured in weeks rather than a year, 
greatly simplifying the characterisation of 
potentially habitable exoplanets.

The near-infrared (NIR) is particularly 
suited to M dwarf studies, as it mitigates 
stellar activity jitter on RV measurements 
compared to the optical and provides 
access to helium and molecular signa-
tures like H2O, O2, CO, CH4, and CO2, 
critical for atmospheric studies. These 
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Figure 2. Extracted and wavelength-calibrated 
spectrum of Proxima Cen in HE mode, centered at 
1268 nm. Blue: uncorrected spectrum; orange: 
telluric-corrected spectrum. From Bouchy et al. (2025). 
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Bouchy et al., 2025). The two independent 
pipelines are particularly valuable for cross-
validation and assessing the robustness 
of scientific results.

The pipeline begins with order localisation, 
flat-fielding, and wavelength calibration. 
The FP etalon ensures precise drift moni-
toring when necessarya, while uranium-
neon lamps, combined with FP frames, 
provide an estimate of the FP cavity 
length, forming the basis for the absolute 
calibration across nights and observing 

NIRPS operates in the Y, J, and H bands, 
covering a wavelength range from 
972.4 nm to 1919.6 nm. It offers two fibre 
sizes (0.4 and 0.9 arcseconds) yielding 
resolving powers of R = 90 000 for the 
high-accuracy (HA) mode and R = 75 000 
for the high-efficiency (HE) mode. This 
spectral range enables the detection of 
molecular signatures such as water and 
methane in planetary atmospheres. The 
frontend module (Figure 1) houses the  
AO system, which corrects for atmospheric 
turbulence to improve light coupling into 
the fibres under variable seeing condi-
tions. A dichroic beam splitter simultane-
ously directs light to both HARPS and 
NIRPS, enabling parallel optical and NIR 
observations.

The fibre link transports light to the  
spectrograph and incorporates a fibre 
stretcher and double scrambler to reduce 
modal noise that impacts radial velocity 
(RV) measurements. The calibration unit 
includes hollow-cathode (HC) uranium-
neon lamps and a Fabry-Pérot (FP) étalon 
to illuminate a reference fibre alongside 
the science fibre. The HC provides abso-
lute wavelength calibration, while the FP 
allows drift correction. Calibrations are 
performed daily, with a laser frequency 
comb currently under commissioning.

The backend spectrograph is housed 
within a vacuum vessel, with its optical 
bench stabilized to 75 K, maintaining 
thermal variations within 0.1 mK. The 
optical design features a reflective dou-
ble-pass collimator, a 13-lines mm–1 R4 
echelle grating, a carousel of five ZnSe 
prisms for cross-dispersion, and a refrac-
tive camera that feeds a 4096 × 4096-
pixel Hawaii-4RG (H4RG) infrared detec-
tor with 15-μm pixels. The full wavelength 
range spans 71 orders, with the line 
spread function sampled by three pixels.

Data pipeline

The NIRPS data reduction pipeline 
(NIRPS-DRS) is adapted from the 
ESPRESSO pipeline, incorporating fea-
tures inspired by the APERO pipeline 
(Cook et al., 2022), a versatile framework 
initially developed for SPIRou. While 
NIRPS-DRS and APERO share similarities, 
they differ in key aspects, such as their 
approaches to telluric correction (see 
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runs. A major challenge in NIR precision 
velocimetry is the contamination of stellar 
spectra by telluric absorption lines. The 
NIRPS-DRS pipeline includes a telluric 
subtraction module developed for 
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frequently planet formation occurs around 
such stars with masses below 0.1 M☉; 
and (3) understanding the process of 
planet formation and dynamical evolution 
by searching for planets around young, 
very low-mass stars.

Mass characterisation of transiting 
planets orbiting M dwarfs

This programme is dedicated to providing 
mass measurements of transiting 
exoplanets unveiled by TESS and other 
transit surveys through various sub- 
programmes. Mass measurements are 
essential for interpreting transmission 
spectra obtained with JWST and con-
straining internal structure models. This 
programme aims to shed light on the 
nature, formation and evolution of super-
Earths and mini-Neptunes. One sub-
programme is dedicated to precise (~10%) 
mass measurements of small rocky planets 
to constrain their core mass fraction.

High-resolution spectroscopy of 
exoplanet atmospheres

The third core programme centres on 
atmospheric studies of exoplanets, pri-
marily hot gas giants, using transmission 
and emission spectroscopy. Its objective 
is to uncover the chemistry, dynamics, 
and orbital architectures of exoplanet 
atmospheres. The programme combines 
a broad atmospheric reconnaissance 
survey with in-depth analyses of a care-
fully selected sample of exoplanets, aim-
ing to establish critical reference datasets 
in preparation for the upcoming ELT era.

Other science

HARPS and NIRPS provide a unique 
capability, each performing at the metre-
per-second level, for stellar activity studies 
as well as stellar characterisation, includ-
ing abundance determination (for exam-
ple, Jahandar et al., 2025), in particular 
refractory elements (Fe, Mg, Si) which are 
critical inputs for internal structure model-
ling. This approach was applied to LHS 
1140 using commissioning data, revealing 
that the temperate super-Earth LHS 1140b 
is likely a water world with a 10–20% water 
mass fraction (Cadieux et al., 2024).

RV performance was characterised on 
several RV standards with known planetary 
systems such as Proxima Cen, featuring 
two planets including an Earth-mass one 
in the habitable zone (Proxima b). As shown 
in Figure 3, Proxima b is clearly detected 
with a residual noise of ~80 cm s–1 com-
pared to 2.5 m s–1 from the HARPS data 
alone. NIRPS is the first NIR velocimeter to 
demonstrate sub-metre-per-second perfor-
mance, partly due to the excellent sub-
Kelvin thermal stability of the spectrograph 
yielding typical drifts of 3–4 cm s–1 day–1 
and wavelength uncertainties at the level 
of 50–70 cm s–1.

High-resolution spectroscopy is a power-
ful tool for probing exoplanetary atmos-
pheres via transmission spectroscopy 
and constraining orbital architecture, 
including the spin-orbit angle, through the 
Rossiter–McLaughlin (RM) effect. This 
capability was demonstrated by observ-
ing three transit events of the warm 
Saturn WASP-69b. As shown in Figure 4, 
NIRPS successfully detected the helium 
triplet near 1083 nm in the planet’s 
atmosphere, with evidence of variability 
indicative of cometary-like tail mass loss. 
The RM measurements suggest a slightly 
misaligned orbit.

NIRPS Guaranteed Time Observation 
programme highlights

In exchange for building and operating 
the instrument, ESO awarded the NIRPS 
consortium 725 nights over five years. 
These are allocated to three core science 
programmes, each receiving 225 nights, 
with an additional 50 nights reserved for 
‘other science’ programmes.

Blind RV search for exoplanets orbiting 
nearby low-mass stars

This core sub-programme is primarily 
dedicated to a blind search for planets 
around M dwarfs (< 0.6 M⊙) with three 
major objectives: (1) identifying the near-
est exoplanetary systems amenable to 
atmospheric characterisation in reflected 
light with the ELT (Snellen et al., 2015; 
Pallé et al., 2023) and which are orbiting 
M dwarfs within approximately 6 pc;  
(2) searching for exoplanets around 
nearby ultra-cool dwarfs to estimate how 

ESPRESSO (Allart et al., 2022), while 
APERO is using an ensemble of telluric 
standards, fast-rotating early-type stars, 
and a principal component analysis 
(PCA)-based method for modelling and 
removing telluric lines. Figure 2 displays  
a portion of the J-band spectrum of 
Proxima Cen, both before and after telluric 
correction, demonstrating the effective-
ness of our method, which is absolutely 
crucial for achieving metre-per-second-
level precision at infrared wavelengths.

Radial velocity extraction is performed 
using two complementary methods: the 
standard cross-correlation function (CCF) 
technique and the line-by-line (LBL) 
method (Artigau et al., 2022). The CCF 
provides immediate RV measurements for 
each observation, while the LBL method, 
which constructs a template spectrum 
from a time series, generally delivers 
more precise RVs with less sensitivity to 
outliers, achieving, for example, a twofold 
improvement on the ESPRESSO uncer-
tainties for the temperate super-Earth 
LHS 1140b (Cadieux et al., 2024).

On-sky performance and first results

NIRPS commissioning took place over 
two years from November 2019 to March 
2023 with the official first light on 17 May 
2022. The commissioning phase of 
NIRPS demonstrated excellent perfor-
mance, meeting or exceeding its design 
requirements.

The instrument’s overall throughput peaks 
at 13% in the H band. The AO system 
significantly improves fibre coupling effi-
ciency, achieving typical encircled energy 
of 55% and 70% for the HA and HE modes, 
respectively; this performance is constant 
up to I = 11. Modal noise is mitigated 
through the fibre stretcher and through AO 
scanning by using the tip/tilt mirror to move 
the star within the fibre core randomly 
during an exposure. Together, both stretch-
ing and AO-scanning yield a modal noise 
reduction by a factor of five for the HE 
mode, leaving a residual noise of 0.43% 
(SNR~230) similar to the flat-field stability 
of 0.65% which translates into RV noise 
of 0.9 m s–1. The AO was successfully 
tested to lock onto small (< 2-arcsecond) 
Solar System objects, such as Saturn’s 
and Jupiter’s moons.
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Notes

a	 �In practice, NIRPS is so stable that the FP is not 
used during science observations.

With its exceptional performance and 
ambitious GTO programme, NIRPS is 
poised to play a central role in exoplanet 
research. NIRPS lays the foundation and 
expertise needed for the ELT era, where 
high-resolution infrared spectroscopy will 
be essential for characterising the atmos-
pheres of nearby exoplanets through 
reflected light.
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Solar observations

The HARPS Experiment for Light Integrated 
Over the Sun (HELIOS) solar telescope 
(Dumusque et al., 2015) feeds both 
HARPS and NIRPS, and continuously 
monitors the Sun as a star. High-cadence 
solar spectra enable detailed insight into 
solar variability and its effect on disc-
integrated radial velocity and on the 
retrieval of planetary atmospheric param-
eters (Mercier et al., 2025).

Summary

NIRPS represents a major milestone in 
precision infrared velocimetry, achieving 
sub-metre-per-second precision through 
advanced telluric subtraction techniques 
and post-processing algorithms like LBL. 
Early results demonstrate its considerable 
potential for precise mass determination, 
exoplanet atmospheric characterisation, 
and stellar studies, including activity 
analysis and abundance measurements. 
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This image shows the 
RCW 38 star cluster  
in visible light. Dust 
absorbs most light at 
these wavelengths,  
hiding large areas of  
this cluster from us.
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