

NIRPS Joins HARPS: Setting New Standards at Infrared Wavelengths

René Doyon ¹	Ryan Cloutier ²¹	Mirsad Sarajlic ¹⁷
François Bouchy ²	João Coelho ^{15, 16}	Alex Segovia ²
Francesco Pepe ²	Marion Cointepas ^{2, 4}	Julia Seidel ^{3, 37, 2}
Claudio Melo ³	Uriel Conod ²	Damien Ségransan ²
Étienne Artigau ¹	Nicolas B. Cowan ^{22, 23}	Robin Schnell ²
Lison Malo ¹	Eduardo Cristo ^{9, 10}	Ana Rita Costa Silva ^{9, 10, 2}
François Wildi ²	João Gomes da Silva ⁹	Avidaan Srivastava ^{1, 2}
Frédérique Baron ¹	Laurie Dauplaise ¹	Atanas K. Stefanov ^{6, 7}
Xavier Delfosse ⁴	Antoine Darveau-Bernier ¹	Marcio A. Teixeira ⁵
Jose Renan De Medeiros ⁵	Roseane de Lima Gomes ^{1, 5}	Stéphane Udry ²
Jonay I. González Hernández ^{6, 7}	Daniel Brito de Freitas ²⁴	Dania Valencia ¹⁹
Nuno C. Santos ^{9, 10}	Elisa Delgado-Mena ^{25, 9}	Valentina Vaulato ²
Gregg Wade ¹¹	Jean-Baptiste Delisle ²	Joost P. Wardenier ¹
Romain Allart ¹	David Ehrenreich ^{2, 26}	Bachar Wehbe ^{15, 16}
Khaled Al Moulla ²	João Faria ^{2, 9}	Drew Weisserman ²¹
Nicolas Blind ²	Pedro Figueira ^{2, 9}	Ivan Wevers ¹⁴
Charles Cadieux ¹	Dasaev O. Fontinelle ⁵	Vincent Yariv ⁴
Bruno L. Canto Martins ⁵	Thierry Forveille ⁴	Gérard Zins ³
Neil J. Cook ¹	Jonathan Gagné ^{27, 1}	
Xavier Dumusque ²	Ludovic Genolet ²	
Yolanda Frensch ^{2, 3}	Félic Gracia Témich ⁶	
Frédéric Genest ¹	Olivier Hernandez ²⁷	
Nolan Grieves ²	Melissa J. Hobson ²	
Gaspare Lo Curto ³	Jens Hoeijmakers ^{28, 2}	
Christophe Lovis ²	Norbert Hubin ³	
Lucille Mignon ^{2, 4}	Farbod Jahandar ¹	
Louise D. Nielsen ^{2, 3, 12}	Ray Jayawardhana ²⁹	
Anne-Sophie Poulin-Girard ¹³	Hans-Ulrich Käufl ³	
José Luis Rasilla ⁶	Dan Kerley ¹⁴	
Rafael Rebolo ^{6, 7, 8}	Johann Kolb ³	
Vladimir Reshetov ¹⁴	Vigneshwaran Krishnamurthy ²²	
Danuta Sosnowska ²	David Lafrenière ¹	
Micheal Sordet ²	Pierrot Lamontagne ¹	
Jonathan Saint-Antoine ¹	Pierre Larue ⁴	
Alejandro Suárez Mascareño ^{6, 7}	Henry Leath ²	
Simon Thibault ¹³	Alexandrine L'Heureux ¹	
Philippe Vallée ¹	Izan de Castro Leão ⁵	
Thomas Vandal ¹	Olivia Lim ¹	
Manuel Abreu ^{15, 16}	Allan M. Martins ^{5, 2}	
José L. A. Aguiar ⁵	Jaymie Matthews ³⁰	
Guillaume Allain ¹³	Jean-Sébastien Mayer ¹	
Tomy Arial ¹	Yuri S. Messias ^{1, 5}	
Hughes Auger ¹³	Stan Metchev ³¹	
Susana C. C. Barros ^{9, 10}	Leslie Moranta ^{1, 27}	
Luc Bazinet ¹	Christoph Mordasini ¹⁷	
Björn Benneke ¹	Dany Mounzer ²	
Xavier Bonfils ⁴	Nicola Nari ^{32, 6, 7}	
Anne Boucher ¹	Ares Osborn ²¹	
Vincent Bourrier ²	Mathieu Ouellet ¹	
Sébastien Bovay ²	Jon Otegi ²	
Christopher Broeg ^{17, 18}	Léna Parc ²	
Denis Brousseau ¹³	Luca Pasquini ³	
Vincent Bruniquel ²	Vera M. Passegger ^{6, 7, 33, 34}	
Martha Bryan ¹⁹	Stefan Pelletier ^{2, 1}	
Alexandre Cabral ^{15, 16}	Céline Peroux ³	
Andres Carmona ⁴	Caroline Piaulet-Ghorayeb ^{1, 35}	
Yann Carteret ²	Mykhaylo Plotnykov ¹⁹	
Zalpha Challita ^{1, 20}	Emanuela Pompei ³	
Bruno Chazelas ²	Jason Rowe ³⁶	

¹ University of Montreal, Mont-Mégantic Observatory and Trottier Institute for Research on Exoplanets, Canada

² Geneva Observatory, Department of Astronomy, University of Geneva, Switzerland

³ ESO

⁴ Grenoble Alpes University, CNRS, IPAG, France

⁵ Department of Theoretical and Experimental Physics, Federal University of Rio Grande do Norte, Brazil

⁶ Canary Islands Institute of Astrophysics (IAC), Spain

⁷ Department of Astrophysics, University of La Laguna, Spain

⁸ Spanish National Research Council (CSIC), Spain

⁹ Institute of Astrophysics and Space Science, University of Porto, CAUP, Portugal

¹⁰ Department of Physics and Astronomy, Faculty of Science, University of Porto, Portugal

¹¹ Department of Physics and Space Science, Royal Military College of Canada, Kingston, Canada

¹² University Observatory, Faculty of Physics, Ludwig-Maximilians University, Munich, Germany

¹³ Centre of Optics, Photonics and Lasers, Laval University, Canada

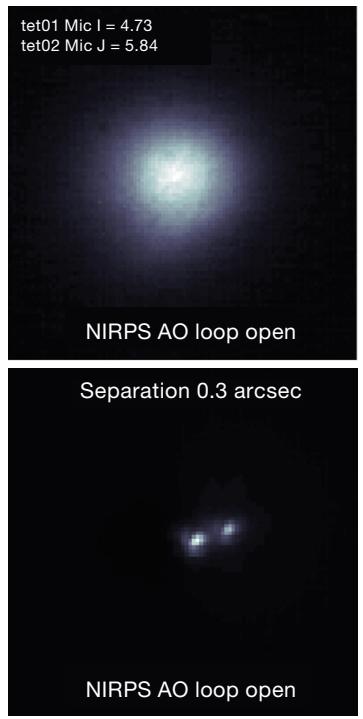
¹⁴ Herzberg Astronomy and Astrophysics Research Centre, National Research Council of Canada

¹⁵ Institute of Astrophysics and Space Science, Faculty of Science, University of Lisbon, Portugal

- ¹⁶ Department of Physics, Faculty of Science, University of Lisbon, Portugal
- ¹⁷ Space Research and Planetary Sciences, Physics Institute, University of Bern, Switzerland
- ¹⁸ Center for Space and Habitability, University of Bern, Switzerland
- ¹⁹ Department of Physics, University of Toronto, Toronto, Canada
- ²⁰ Aix Marseille University, CNRS, CNES, LAM, Marseille, France
- ²¹ Department of Physics & Astronomy, McMaster University, Canada
- ²² Department of Physics, McGill University, Canada
- ²³ Department of Earth & Planetary Sciences, McGill University, Canada
- ²⁴ Department of Physics, Federal University of Ceará, Brazil
- ²⁵ Centre for Astrobiology (CAB), CSIC-INTA, ESAC campus, Spain
- ²⁶ Life in the Universe Center, Faculty of Science, University of Geneva, Switzerland
- ²⁷ Montreal Planetarium, Espace pour la Vie, Canada
- ²⁸ Lund Observatory, Division of Astrophysics, Department of Physics, Lund University, Sweden
- ²⁹ York University, Canada

- ³⁰ University of British Columbia, Canada
- ³¹ Western University, Department of Physics & Astronomy and Institute for Earth and Space Exploration, Canada
- ³² Light Bridges S.L., Teide Observatory, Spain
- ³³ Hamburg Observatory, Germany
- ³⁴ Subaru Telescope, National Astronomical Observatory of Japan, USA
- ³⁵ Department of Astronomy & Astrophysics, University of Chicago, USA
- ³⁶ Department of Physics & Astronomy, Bishop's University Canada
- ³⁷ Lagrange Laboratory, Côte d'Azur Observatory, CNRS, Côte d'Azur University, France

The Near-Infrared Planet Searcher (NIRPS) is a high-resolution, near-infrared spectrograph optimised for detecting and characterising exoplanets around low-mass stars, working in tandem with the High Accuracy Radial velocity Planet Searcher (HARPS). While HARPS set new standards 20 years ago with its metre-per-second-level precision, NIRPS follows this successful path, achieving even better precision at infrared wavelengths. This article presents

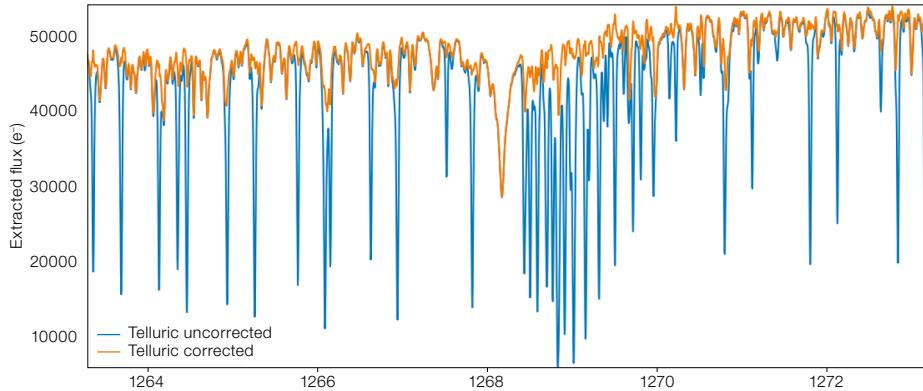

an overview of the design of NIRPS, its on-sky performance, its Guaranteed Time Observation programme, and its first scientific results.

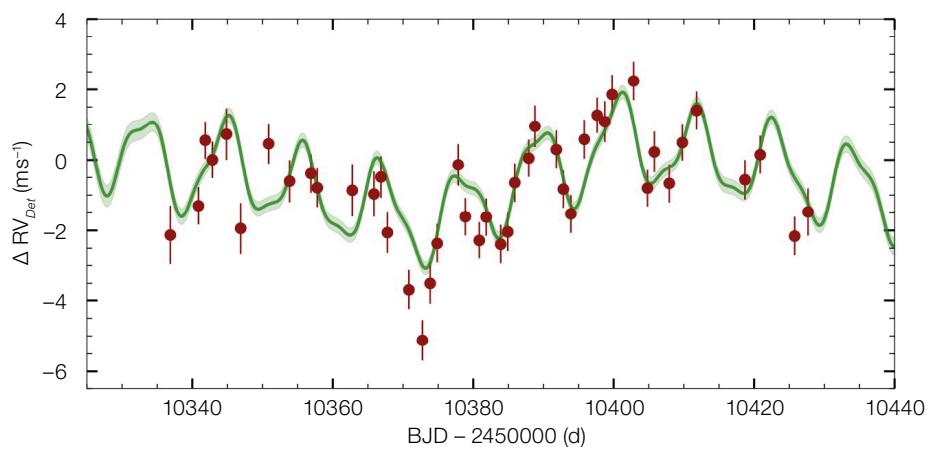
Introduction

The discovery of the first exoplanet orbiting a solar-type star (Mayor and Queloz, 1995), and of the first transiting exoplanet (Charbonneau et al., 2000), stand as pivotal moments in astrophysics. The quest for nearby habitable worlds and evidence of biological activity beyond the Solar System has prompted the construction of powerful observatories such as Kepler (Koch et al., 2010), the Transiting Exoplanet Survey Satellite (TESS; Ricker et al., 2015), the James Webb Space Telescope (JWST; Gardner et al., 2023) and, very soon, ESO's Extremely Large Telescope (ELT; de Zeeuw, Tamai & Liske, 2014).

Figure 1. Left: schematic of the NIRPS frontend. Right: images from the guiding camera of a binary star (0.3 arcseconds separation) with the AO loop open (top) and closed (bottom). From Bouchy et al. (2025).

Frontend




Figure 2. Extracted and wavelength-calibrated spectrum of Proxima Cen in HE mode, centered at 1268 nm. Blue: uncorrected spectrum; orange: telluric-corrected spectrum. From Bouchy et al. (2025).

the precision of RV measurements and significantly improves our ability to disentangle planetary signals from stellar jitter noise. This article presents a brief overview of NIRPS, including its design, on-sky performance, initial results, and highlights from its extensive Guaranteed Time Observation (GTO) programme. For a more comprehensive description of NIRPS, readers are referred to Bouchy et al. (2025).

NIRPS+HARPS: a unique dual optical-infrared precision velocimeter

NIRPS is a fibre-fed, highly-stabilised echelle spectrograph operating in the NIR and installed on the ESO 3.6-metre telescope at La Silla, Chile. The instrument includes a frontend bonnette at the Cassegrain focus, linked via optical fibres to the cryogenic spectrograph in the coudé room. The frontend integrates an adaptive optics (AO) system to enhance efficiency and minimise the instrument's size. As for HARPS, NIRPS's spectrograph is housed in a thermally-controlled enclosure to ensure optimal thermal stability.

Figure 3. High cadence of NIRPS RV detrended data of Proxima Cen, along with the best model fit, showing residuals with an RMS of 81 cm s^{-1} . From Suárez Mascareño et al. (2025).

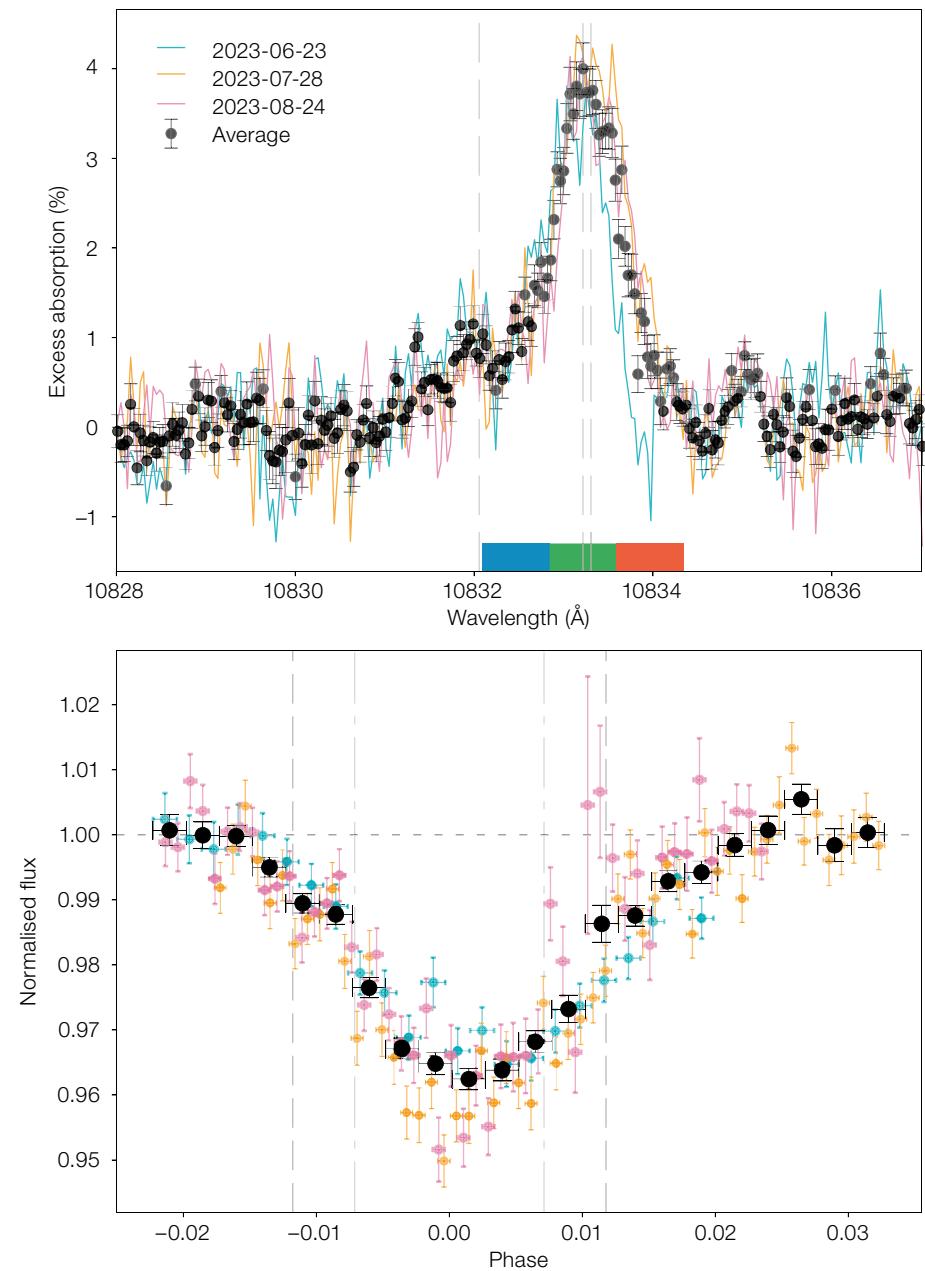
The rapid progress in exoplanet research over recent decades was driven largely by precision velocimetry and in particular the development of fibre-fed optical spectrographs like the High Accuracy Radial velocity Planet Searcher (HARPS; Mayor et al., 2003), which set new standards by achieving metre-per-second precision. Advances in large-format infrared detectors, largely motivated by and developed for JWST, paved the way for a new generation of precision infrared spectrographs tailored to studying low-mass stars. This context prompted the Universities of Montreal and Geneva, in collaboration with the Institute of Astrophysics and Space Science (Portugal), the Canaries Institute of Astrophysics (Spain), Grenoble Alpes University (France), the Federal University of Rio Grande do Norte (Brazil), and ESO, to initiate the development of an ‘infrared HARPS’ for the southern hemisphere.

Low-mass M dwarfs, which dominate the Milky Way’s stellar population (Reylé et al., 2021), are excellent targets for exoplanet studies. Their small radii and masses amplify detection signals via radial velocity (RV) and transit methods, while their low luminosity means that habitable zones lie closer to the star, with orbital periods measured in weeks rather than a year, greatly simplifying the characterisation of potentially habitable exoplanets.

The near-infrared (NIR) is particularly suited to M dwarf studies, as it mitigates stellar activity jitter on RV measurements compared to the optical and provides access to helium and molecular signatures like H_2O , O_2 , CO , CH_4 , and CO_2 , critical for atmospheric studies. These

advantages have driven the development of high-resolution NIR spectrographs, including GIANO (Oliva et al., 2012), the Habitable-zone Planet Finder (HPF; Mahadevan et al., 2012), the Calar Alto high-Resolution search for M dwarfs with Exoearths with Near-infrared and optical Échelle Spectrographs (CARMENES; Quirrenbach et al., 2014), the InfraRed Doppler (IRD) instrument (Kotani et al., 2018), and SpectroPolarimètre InfraRouge (SPIRou; Donati et al., 2020).

The Near-Infrared Planet Searcher (NIRPS), the newest addition to this suite, builds on the legacy of HARPS (Mayor et al., 2003) and the Echelle SPectrograph for Rocky Exoplanet and Stable Spectroscopic Observations (ESPRESSO; Pepe et al., 2021), while leveraging the infrared expertise and experience gained from SPIRou. Operating in tandem with HARPS, NIRPS provides an unparalleled optical-NIR capability for precision velocimetry. This dual-wavelength approach enhances


NIRPS operates in the *Y*, *J*, and *H* bands, covering a wavelength range from 972.4 nm to 1919.6 nm. It offers two fibre sizes (0.4 and 0.9 arcseconds) yielding resolving powers of $R = 90\,000$ for the high-accuracy (HA) mode and $R = 75\,000$ for the high-efficiency (HE) mode. This spectral range enables the detection of molecular signatures such as water and methane in planetary atmospheres. The frontend module (Figure 1) houses the AO system, which corrects for atmospheric turbulence to improve light coupling into the fibres under variable seeing conditions. A dichroic beam splitter simultaneously directs light to both HARPS and NIRPS, enabling parallel optical and NIR observations.

The fibre link transports light to the spectrograph and incorporates a fibre stretcher and double scrambler to reduce modal noise that impacts radial velocity (RV) measurements. The calibration unit includes hollow-cathode (HC) uranium-neon lamps and a Fabry-Pérot (FP) étalon to illuminate a reference fibre alongside the science fibre. The HC provides absolute wavelength calibration, while the FP allows drift correction. Calibrations are performed daily, with a laser frequency comb currently under commissioning.

The backend spectrograph is housed within a vacuum vessel, with its optical bench stabilized to 75 K, maintaining thermal variations within 0.1 mK. The optical design features a reflective double-pass collimator, a 13-lines mm^{-1} R4 echelle grating, a carousel of five ZnSe prisms for cross-dispersion, and a refractive camera that feeds a 4096×4096 -pixel Hawaii-4RG (H4RG) infrared detector with 15- μm pixels. The full wavelength range spans 71 orders, with the line spread function sampled by three pixels.

Data pipeline

The NIRPS data reduction pipeline (NIRPS-DRS) is adapted from the ESPRESSO pipeline, incorporating features inspired by the APERO pipeline (Cook et al., 2022), a versatile framework initially developed for SPIRou. While NIRPS-DRS and APERO share similarities, they differ in key aspects, such as their approaches to telluric correction (see

Bouchy et al., 2025). The two independent pipelines are particularly valuable for cross-validation and assessing the robustness of scientific results.

The pipeline begins with order localisation, flat-fielding, and wavelength calibration. The FP etalon ensures precise drift monitoring when necessary^a, while uranium-neon lamps, combined with FP frames, provide an estimate of the FP cavity length, forming the basis for the absolute calibration across nights and observing

Figure 4. Transmission spectra (top) and excess helium light curves (bottom) comparison between transits (in cyan, orange, and rose) and the average in black. On the top panel, three spectral regions (blue, green, and red) are identified to measure the temporal variation of the helium signature. From Allart et al. (2025).

runs. A major challenge in NIR precision velocimetry is the contamination of stellar spectra by telluric absorption lines. The NIRPS-DRS pipeline includes a telluric subtraction module developed for

ESPRESSO (Allart et al., 2022), while APERO is using an ensemble of telluric standards, fast-rotating early-type stars, and a principal component analysis (PCA)-based method for modelling and removing telluric lines. Figure 2 displays a portion of the *J*-band spectrum of Proxima Cen, both before and after telluric correction, demonstrating the effectiveness of our method, which is absolutely crucial for achieving metre-per-second-level precision at infrared wavelengths.

Radial velocity extraction is performed using two complementary methods: the standard cross-correlation function (CCF) technique and the line-by-line (LBL) method (Artigau et al., 2022). The CCF provides immediate RV measurements for each observation, while the LBL method, which constructs a template spectrum from a time series, generally delivers more precise RVs with less sensitivity to outliers, achieving, for example, a twofold improvement on the ESPRESSO uncertainties for the temperate super-Earth LHS 1140b (Cadieux et al., 2024).

On-sky performance and first results

NIRPS commissioning took place over two years from November 2019 to March 2023 with the official first light on 17 May 2022. The commissioning phase of NIRPS demonstrated excellent performance, meeting or exceeding its design requirements.

The instrument's overall throughput peaks at 13% in the *H* band. The AO system significantly improves fibre coupling efficiency, achieving typical encircled energy of 55% and 70% for the HA and HE modes, respectively; this performance is constant up to $f/ = 11$. Modal noise is mitigated through the fibre stretcher and through AO scanning by using the tip/tilt mirror to move the star within the fibre core randomly during an exposure. Together, both stretching and AO-scanning yield a modal noise reduction by a factor of five for the HE mode, leaving a residual noise of 0.43% (SNR~230) similar to the flat-field stability of 0.65% which translates into RV noise of 0.9 m s^{-1} . The AO was successfully tested to lock onto small ($< 2\text{-arcsecond}$) Solar System objects, such as Saturn's and Jupiter's moons.

RV performance was characterised on several RV standards with known planetary systems such as Proxima Cen, featuring two planets including an Earth-mass one in the habitable zone (Proxima b). As shown in Figure 3, Proxima b is clearly detected with a residual noise of $\sim 80 \text{ cm s}^{-1}$ compared to 2.5 m s^{-1} from the HARPS data alone. NIRPS is the first NIR velocimeter to demonstrate sub-metre-per-second performance, partly due to the excellent sub-Kelvin thermal stability of the spectrograph yielding typical drifts of $3\text{--}4 \text{ cm s}^{-1} \text{ day}^{-1}$ and wavelength uncertainties at the level of $50\text{--}70 \text{ cm s}^{-1}$.

High-resolution spectroscopy is a powerful tool for probing exoplanetary atmospheres via transmission spectroscopy and constraining orbital architecture, including the spin-orbit angle, through the Rossiter–McLaughlin (RM) effect. This capability was demonstrated by observing three transit events of the warm Saturn WASP-69b. As shown in Figure 4, NIRPS successfully detected the helium triplet near 1083 nm in the planet's atmosphere, with evidence of variability indicative of cometary-like tail mass loss. The RM measurements suggest a slightly misaligned orbit.

NIRPS Guaranteed Time Observation programme highlights

In exchange for building and operating the instrument, ESO awarded the NIRPS consortium 725 nights over five years. These are allocated to three core science programmes, each receiving 225 nights, with an additional 50 nights reserved for 'other science' programmes.

Blind RV search for exoplanets orbiting nearby low-mass stars

This core sub-programme is primarily dedicated to a blind search for planets around M dwarfs ($< 0.6 M_\odot$) with three major objectives: (1) identifying the nearest exoplanetary systems amenable to atmospheric characterisation in reflected light with the ELT (Snellen et al., 2015; Pallé et al., 2023) and which are orbiting M dwarfs within approximately 6 pc; (2) searching for exoplanets around nearby ultra-cool dwarfs to estimate how

frequently planet formation occurs around such stars with masses below $0.1 M_\odot$; and (3) understanding the process of planet formation and dynamical evolution by searching for planets around young, very low-mass stars.

Mass characterisation of transiting planets orbiting M dwarfs

This programme is dedicated to providing mass measurements of transiting exoplanets unveiled by TESS and other transit surveys through various sub-programmes. Mass measurements are essential for interpreting transmission spectra obtained with JWST and constraining internal structure models. This programme aims to shed light on the nature, formation and evolution of super-Earths and mini-Neptunes. One sub-programme is dedicated to precise ($\sim 10\%$) mass measurements of small rocky planets to constrain their core mass fraction.

High-resolution spectroscopy of exoplanet atmospheres

The third core programme centres on atmospheric studies of exoplanets, primarily hot gas giants, using transmission and emission spectroscopy. Its objective is to uncover the chemistry, dynamics, and orbital architectures of exoplanet atmospheres. The programme combines a broad atmospheric reconnaissance survey with in-depth analyses of a carefully selected sample of exoplanets, aiming to establish critical reference datasets in preparation for the upcoming ELT era.

Other science

HARPS and NIRPS provide a unique capability, each performing at the metre-per-second level, for stellar activity studies as well as stellar characterisation, including abundance determination (for example, Jahandar et al., 2025), in particular refractory elements (Fe, Mg, Si) which are critical inputs for internal structure modelling. This approach was applied to LHS 1140 using commissioning data, revealing that the temperate super-Earth LHS 1140b is likely a water world with a 10–20% water mass fraction (Cadieux et al., 2024).

Solar observations

The HARPS Experiment for Light Integrated Over the Sun (HELIOS) solar telescope (Dumusque et al., 2015) feeds both HARPS and NIRPS, and continuously monitors the Sun as a star. High-cadence solar spectra enable detailed insight into solar variability and its effect on disc-integrated radial velocity and on the retrieval of planetary atmospheric parameters (Mercier et al., 2025).

Summary

NIRPS represents a major milestone in precision infrared velocimetry, achieving sub-metre-per-second precision through advanced telluric subtraction techniques and post-processing algorithms like LBL. Early results demonstrate its considerable potential for precise mass determination, exoplanet atmospheric characterisation, and stellar studies, including activity analysis and abundance measurements.

With its exceptional performance and ambitious GTO programme, NIRPS is poised to play a central role in exoplanet research. NIRPS lays the foundation and expertise needed for the ELT era, where high-resolution infrared spectroscopy will be essential for characterising the atmospheres of nearby exoplanets through reflected light.

Acknowledgements

The NIRPS project became a reality thanks to the support and vision of ESO, the scientific leadership of NIRPS's cohesive consortium, and key financial contributions from the Canada Foundation for Innovation, the Trottier Family Foundation, the Swiss National Science Foundation, the Spanish Ministry of Science, the French National Research Agency, the Fundação para a Ciência e a Tecnologia (FCT) in Portugal and the Brazilian funding agency CNPq.

References

Allart, R. et al. 2022, A&A, 666, A196
 Allart, R. et al. 2025, accepted to A&A
 Artigau, É. et al. 2022, AJ, 164, 84
 Bouchy, F. et al. 2025, submitted to A&A

Cadieux, C. et al. 2024, ApJL, 960, L3
 Charbonneau, D. et al. 2000, ApJL, 529, L45
 Cook, N. J. et al. 2022, PASP, 134, 114509
 de Zeeuw, T., Tamai, R. & Liske, J. 2014, The Messenger, 158, 3
 Donati, J.-F. et al. 2020, MNRAS, 498, 5684
 Dumusque, X. et al. 2015, ApJL, 814, L21
 Gardner, J. P. et al. 2023, PASP, 135, 068001
 Jahandar, F. et al. 2025, ApJ, 978, 154
 Koch, D. G. et al. 2010, ApJL, 713, L79
 Kotani, T. et al. 2018, Proc. SPIE, 10702, 1070211
 Mahadevan, S. et al. 2012, Proc. SPIE, 8446, 84461S
 Mayor, M. & Queloz, D. 1995, Nature, 378, 355
 Mayor, M. et al. 2003, The Messenger, 114, 20
 Mercier, S. et al. 2025, submitted to A&A
 Oliva, E. et al. 2012, Proc. SPIE, 8446, 84463T
 Quirrenbach, A. et al. 2014, Proc. SPIE, 9147, 91471F
 Paille, E. et al. 2023, submitted to Exp Astron, arXiv:2311.17075
 Pepe, F. et al. 2021, A&A, 645, A96
 Reylé, C. et al. 2021, A&A, 650, A201
 Ricker, G. R. et al. 2015, JATIS, 1, 014003
 Snellen, I. et al. 2015, A&A, 576, A59
 Suárez Mascareño, A. et al. 2025, submitted to A&A

Notes

^a In practice, NIRPS is so stable that the FP is not used during science observations.

This image shows the RCW 38 star cluster in visible light. Dust absorbs most light at these wavelengths, hiding large areas of this cluster from us.