Retic or a CCD detector at the ESO Observatory at La Silla, Chile. The resolving power was 60,000 for the CCD spectra and 100,000 for the Reticon ones. The wavelength calibration is provided by a thorium lamp and its internal accuracy is of ± 3 mÅ. Details of the observational and reduction procedure can be found in Ferlet and Dennefeld (1984). In order to get rid of the atmospheric water absorption lines, Na I spectra were compared with template spectra of hot stars taken during the same nights of observation (Vidal-Madjar et al., 1986).

3. The Results
Wherever the D lines are clearly free from saturation, the column densities are derived by applying the usual relation for the linear part of the curve of growth, independent of the unknown velocity spread parameter b. On the other hand, saturation allows only to infer lower limits on the N(NaI).

The presence of the clouds is clearly revealed (see Fig. 1) by the sharp and deep absorption features seen in front of the stars HR 1423, HD 30332, HR 5655, HD 139561, HR 5983, HR 5985, HR 6027 and HR 6118. Small structures detected in front of the stars HR 1438 and HR 6153 could be due either to the fainter boundary of the cloud or to a totally independent, low density nearby medium.

Cloud no. 20
Cloud no. 20 is a suitable candidate because of its small optical extinction and its isolated position towards the galactic anticentre. Its dust properties have been investigated by means of CO and IRAS data (Weiland et al., 1986) and photoelectric and photographic surface brightness observations (Laureijis et al., 1987). The results of our analysis agree with the previous determinations.

From our observations we can infer a distance range between 70 and 220 pc and a mass range of 0.5 and 3.5 M☉.

Cloud no. 126
The CO cloud no. 126 belongs to the ζ Ophiuchi region, its infrared data at 12 and 25 μm are strongly affected by the zodiacal emission of the ecliptic plane, however, values at 60 and 100 μm are well corrected for this and the uncertainties are mainly due to systematic errors related to the calibration problems (IRAS Explanatory Supplement).

Its distance should be of about 100 pc. The estimation to its mass gives 0.15 M☉.

Cloud no. 113
Only an upper limit to the distance can be derived since stars located in front of the cloud are not included in our survey. The cloud lies at a distance less than 90 pc and the lower limit to its mass is of .007 M☉.

4. Conclusions
If the neutral gas in which the strong Na I lines arise belong to the IR-CO clouds, then these latter lie relatively close to the Sun and an upper limit to their distance can be inferred from the distance of the selected stars.

Therefore, some molecular clouds very likely lie within the hot, low-density interstellar gas. The new picture of the local interstellar medium resulting from these data must take into account the coexistence of hot and cold gas. New observations are required in order to sketch the properties of the local space and, because of that, several other molecular clouds are under investigation with this procedure.

References

LETTER
TO THE EDITOR
Fontenelle (The Messenger, No. 50, p. 40, December 1987)
I was pleased to read about Fontenelle, but surprised to learn that this author was unknown to you until recently ... It appears that his celebrity first of all is due to the fact that he lived a hundred years and that, as Perpetual Secretary of Académie des Sciences, he occupied a privileged position in France. On the occasion of the 300th anniversary of the first edition of "Entretiens", the Rouen University organized a 5-day colloquium in October 1987. What concerns more recent editions, there was one by Marabout Universités, Editions Gérard et Cie, Bruxelles, in 1973. Fontenelle is also mentioned in the article by J. Lévy (l'Astronomie, December 1986, 549).

S. DÉBARBAT (Observatoire de Paris)