A New and Improved Camera for the 1.5 m B & C Spectrograph

B. JARVIS and D. HUTSEMÈKERS, ESO

A new dioptric camera was installed on the Boller and Chivens spectrograph at the ESO 1.5 m telescope in February 1989 to replace the old Schmidt camera. This allowed the removal of a focal reducing lens in front of the spectrograph slit designed to match the f/15 beam of the telescope to the f/8 focal ratio input of the spectrograph. The focal length of the new camera is 127.0 mm compared with 143.5 mm for the old camera. This means that the effective dispersions of all gratings as found in the recently published Boller and Chivens manual must be multiplied by 1.13 (= 143.5/127) when used at the 1.52 m telescope. The new slit scale is 9.2 arcsec mm$^{-1}$ (compared to 19.4 arcsec mm$^{-1}$ before) and the detector scale along the slit is 0.68 arcsec pixel$^{-1}$ (with 15 µm pixels, compared to 1.28 arcsec pixel$^{-1}$ before). Note also that the new TV slit-viewing field is now reduced by a factor of 2 giving a new field of about 1.5' x 1.1'. The Nyquist sampling criterion is satisfied with a slit-width of 1.5 arcsec (15 µm pixels and a small grating angle). For larger grating angles (say 10° or more), the grating demagnification must be considered (see Users' Manual).

Observers should also note that, like the old camera, a ghost spectrum will appear on the detector when the grating angle is between 21.5° and 29°. This will occur for all gratings. The ghost spectrum appears (at much reduced intensity) parallel to the real spectrum but displaced symmetrically with respect to the real spectrum about the optical axis of the spectrograph. This poses a problem for long-slit spectroscopy.

A major advantage of the new camera is that observers now have an almost unvignetted field along the spectrograph slit. Also, a three times improvement in efficiency over the old camera is obtained from 4000 Å up to at least 10000 Å (the longest wavelength measured). Using CCD ≠ 13 (ROA) with grating ≠ 13 (508 Å mm$^{-1}$), the absolute efficiency of the system (telescope + spectrograph + CCD) was measured to be 18% at 5445 Å. Figure 1 shows the total system efficiency from 4000 Å to 10000 Å for CCD ≠ 13 and this grating and CCD combination.

Figure 1: Total system efficiency of the 1.52 m telescope and Boller & Chivens spectrograph fitted with the new camera.

References

H. Spinrad et al., 1988, A. J., 96, 836 (previous references therein).