According to the standard null hypothesis, Ho, the noise is white noise. This is not the case in many practical cases. For instance, often the noise is a stochastic process with a certain correlation length lcorr>0, so that on average ncorr consecutive observations are correlated. Such noise corresponds to white noise passed through a low pass filter which cuts off all frequencies above 1/lcorr. Such correlation is not usually taken into account by standard test statistics. The effect of this correlation is to reduce the effective number of observations by a factor ncorr (Schwarzenberg-Czerny, 1989). This has to be accounted for by scaling both the statistics S and the number of its degrees of freedom nj by factors depending on ncorr.
In the test statistic, a continuum level which is inconsistent with the expected value of the statistic may indicate the presence of such a correlation between consecutive data points. A practical recipe to measure the correlation is to compute the residual time series (e.g. with the SINEFIT/TSA command) and to look for its correlation length with COVAR/TSA command. The effect of the correlation in the parameter estimation is an underestimation of the uncertainties of the parameters; the true variances of the parameters are a factor ncorr larger than computed.
In the command individual descriptions, we often refer to probability distributions of specific statistics. For the properties of these individual distributions see e.g. Eadie et. al. (1971), Brandt (1970), and Abramovitz & Stegun (1972). The two latter references contain tables. For a computer code for the computation of the cumulative probabilities see Press et. al. (1986).