Astrophysics for the Next Decade

Bruno Leibundgut
(ESO)
Astrophysics in a Golden Age

• Full coverage of electro-magnetic spectrum
 – MAGIC/HESS → Fermi/INTEGRAL → XMM/Chandra/Swift/Rossi XTE → Galex → HST/Gaia → ground-based optical/IR → Spitzer → Herschel → Planck → IRAM/JCMT/APEX/ALMA → radio telescopes
 – Large archive collections (e.g. ROSAT, ISO, ESO, HST, MAST)

• Astro-particles joining in
 • cosmic rays, neutrinos, gravitational waves, dark matter searches
Fantastic opportunities
Astrophysics in a Golden Age

• International Year of Astronomy
 – Fantastic boost in the public
 – Increased awareness
 – Strong public support
 – Continued interest
 • Connected to the ‘big’ questions
 • Where do we come from?
 • What is our future?
Research themes

- Similar for most observatories
- Defined in several community:
 - Astronet Science Vision and Roadmap
 - ESA Cosmic Vision initiative
 - National decadal reviews
 - Special publications
 - ESA-ESO working group reports
- Specific fields (e.g. Connecting quarks with the Cosmos)
Science themes

• What matters in the universe?
• Planets, planets, planets
• How did stars and planets form?
• The Milky Way our Home
• Our own black hole
• How galaxies form and evolve?
• Fashions and other transients
• When opportunity knocks
What matters in the Universe?

• Characterisation of dark matter and dark energy
 – Requires large samples
 – Multi-year and (often) multi-telescope projects
 • BAO (SDSS, 2dF, WiggleZ, BOSS, HETDEX)
 • Weak lensing (SNLS)
 • Supernovae (SNLS, ESSENCE, SDSS-II, SN Factory, LOSS, PanSTARRS, DES, LSST)
 • Galaxy clusters (REFLEX, NORAS, SPT, DES, eROSITA, LSST)
 • Redshift distortions (VVDS, VIPER)
Dark Energy

• Weak lensing, BAO, supernovae, clusters
 – Important: massive surveys and large sky coverage
 – Current state of the art with 4m telescopes (2dF, SDSS, WiggleZ, VIPERS)
 ⇒ EUCLID → ground-based follow-up/calibrations
 ⇒ spectroscopic calibration of the photo-z
 ⇒ spectroscopic follow-up of supernovae
 ⇒ spectroscopic follow-up for cluster members
 ⇒ optical imaging for photo-z
 ⇒ LSST, HETEX, LAMOST
 ⇒ 8-10m telescopes

• Direct measurement of expansion dynamics
 – Important: high spectral resolution and stability
 ⇒ CODEX at E-ELT

Davis et al. (2008)
Planets, planets, planets

- Planets everywhere
 - Radial velocities
 - Direct imaging
 - Transits

- Characterisation
 - Planetary systems, masses, chemical composition, temperatures
Planets

• Radial velocities
 – Important: time series and high-resolution spectroscopy
 – complementary with space missions (CoRoT, Kepler)
 – Currently done with 1m to 10m telescopes
 • HARPS/HARPS-N, HIRES, UVES
 – ESPRESSO (VLT) and CODEX (E-ELT)

• Direct imaging
 – Important: spatial resolution and IR
 • large telescopes (>8m) with adaptive optics or interferometry (or space telescopes)
 – HST, NACO (VLT), NIRI (Gemini), Keck AO, SPHERE (VLT), GPI (Gemini), MATISSE (VLTI) and EPICS (E-ELT), JWST, ELTs

• Transits
 – Important: time series and accurate photometry
 – Mostly space missions (photometric stability) and long, uninterrupted time series (CoRoT, Kepler, PLATO)
 – Spectroscopy follow-up (HST, 4m to 8m telescopes)
 – OSIRIS (GTC)
How did stars and planets form?

• Star formation shrouded in dust
 – Transition from absorbing cloud to self-luminous object

• Planetary and debris disks as cradles for planets
 – Chemical composition of disks

• Observations
 – Thermal IR, sub-mm and mm observations
 – Importance of spatial resolution
Star and planet formation

• Observing the warm cores of molecular clouds
 – Important: spatial resolution and large wavelength coverage
 – IR observations with large (>8m) telescopes, CanariCam (GTC), VLTI (MATISSE), JWST, ELTs
 – ALMA will be the champion for this field
The Milky Way – our home

• Radial velocity study of 14000 F and G stars over two decades years
 – Plus photometry and Hipparcos parallaxes
• Spiral arms
 – Gas flows, stellar distribution
• Bulge composition, Galactic Centre
• Distribution of massive stars
Our own black hole

• Mass determination through stellar orbits
• Structure around the black hole revealed through flashes
• Coordinated studies with other wavelengths
Galactic Centre

• Determine the black hole event horizon
 – Schwarzschild radius ≈ 9 microarcseconds

• Measure gravity in the strong regime
 – Probing the spacetime geometry
 – Important: IR observations and spatial resolution \rightarrow large telescope (>8m) with AO and interferometry
 – NACO, Keck-AO, GEMS (Gemini), GRAVITY (VLTI), ELTs
How did galaxies form and evolve?

• Characterisation of the Lyman-break galaxies
 – Galaxy population at z>3

• Discovery of compact, old galaxies at z>1
 – “red and dead”, “red distant galaxies”

• Characterisation of galaxies at high z
 – Internal kinematics

• Earliest observable stellar agglomerations
 – Ly-α emitters
The distant universe

• Build up of the Hubble sequence
 – Star forming vs. passive galaxies
 • Important: deep wide-field imaging and massive spectroscopic surveys
 ⇒ VST, VISTA, VIMOS upgrade,
 – Internal physics and morphologies of galaxies at 1<z<3
 • Important: high spatial resolution and spatially resolved spectroscopy
 ⇒ HST, NACO, SINFONI, OSIRIS (GTC), MUSE, KMOS, HAWK-I with AO, JWST, E-ELT

• Objects at very high redshifts (‘first light’)
 – Search for Ly-α emitters, IGM at high z
 • Important: deep surveys, spectroscopic follow-up
 • X-Shooter, NACO, OSIRIS (GTC), HAWK-I with AO, MUSE, KMOS, EMIR (GTC), JWST, E-ELT

Based on Bergeron (2009) Science with the VLT in the ELT Era
Fashions and other transient phenomena

• ESO top ten cited papers are all supernovae and GRBs
 – This is more a sign of fashion than sound physics

• AGNs – topic of the 4m telescopes
 – Topic for 8m telescopes?

• Metal-poor stars – originally 8m (e.g. First Stars programme)
 – And now?
When opportunity knocks

• Unique objects
 – SN 1987A
 • One in a century object?
 – Comets
 • Hale-Bopp, Hyakutake, 73P/Schwassmann-Wachmann 3, Shoemaker-Levy 9, Halley
 – Near-Earth objects
 – Solar system event
 • Spots on Jupiter
 • Volcano eruption on Io?
 • Formation of new large spot on Jupiter?
The telescope landscape

- There are many large optical and infrared telescopes

<table>
<thead>
<tr>
<th>Telescope diameter</th>
<th>In operation</th>
<th>Construction or Planned</th>
</tr>
</thead>
<tbody>
<tr>
<td>d>10m</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>7m < d < 10m</td>
<td>9</td>
<td>LSST</td>
</tr>
<tr>
<td>5m < d < 7m</td>
<td>6</td>
<td>JWST</td>
</tr>
<tr>
<td>3m < d < 5m</td>
<td>16</td>
<td>VISTA, LAMOST, Lowell</td>
</tr>
</tbody>
</table>

- 3 telescope planned with d>20m
Role of 8-10m telescopes

- Workhorses of optical/IR astronomy
 - Distributed resource
 - Access for many astronomers
 - Develop specific strengths
 - E.g. time series, large samples
 - Examples are the 4m telescopes over the past decade
 - AAT/2dF, CFHT/Legacy Survey, ESO 3.6m/HARPS, WHT/SAURON and PN.S
Complementarity

• Follow up of imaging surveys
 – UKIDSS, VST, VISTA, LSST/PanSTARRS
 – ESA Cosmic Vision → EUCLID/PLATO

• Follow up of sources detected at other wavelengths
 – Herschel, Fermi, XMM/Chandra, JWST, eROSITA

• ALMA/SMA follow-up/complement
La Silla Paranal

- VLT
 - Continue operations with new instruments
 - FORS2, ISAAC, UVES, FLAMES, NACO, SINFONI, CRIRES, VISIR, HAWK-I, VIMOS, X-Shooter, KMOS, AOF, MUSE, SPHERE
 - MIDI, AMBER, PRIMA, GRAVITY, MATISSE

- La Silla
 - Continue operations with long-term programmes
 - HARPS, EFOSC2, SOFI, visitor instruments
• **Science requirements**
 – Detect CO and \([\text{CII}]\) in Milky Way galaxy at \(z=3\) in < 24 hr
 – Dust emission, gas kinematics in proto-planetary disks
 – Resolution to match Hubble, JWST and 8-10m with AO
 – Complement to Herschel

• **Specifications**
 – 66 antennas (54x12m, 12x7m)
 – 14 km max baseline (< 10mas)
 – 30-1000 GHz (10–0.3mm), up to 10 receiver bands
E-ELT

• Detailed design study
 – Baseline 42m primary mirror
 – Adaptive optics built-in
 – Industry strongly engaged
 – Study complete in 2010

• Project
 – Builds on *entire* expertise at ESO *and* in the member states
 – Construction 2011-2018
 – Synergy: JWST/ALMA/SKA