Supernova Surveys

Bruno Leibundgut
ESO
One-slide SN 1987A

 - inner ejecta resolved and mapped in [Si I] and [Fe II] as well as He I lines
Some past supernova surveys

- **Historical surveys**
 - **Zwicky/Caltech/Palomar/POSS**
 - first systematic searches with the 18” Schmidt
 - only provider of SNe for a long time
 - **Asiago (Rosino)/Zimmerwald (Wild)**
 - spawned from the Caltech search
 - **Rev. Evans, McNaught**
 - extremely successful amateur searches
 - **Las Campanas search (Tammann/Sandage – 1984-1986)**
 - very limited success (20 SNe in 2 years)
 - no rate paper every published
 - **Berkeley automated search**
 - first automated search (from Leuschner Observatory)
 - **Calan/Tololo SN search (Maza/Hamuy/Phillips/Suntzeff - 1990s)**
 - successful search with photographic plates and CCD follow-up observations
 - coordinated spectroscopy
 - basis for SN cosmology by providing the nearby sample (Hamuy et al. 2006)
Nearby supernova surveys

• Nearby – z<0.03
 → mostly focused on prominent, large galaxies
 → “stellar explosions → look where the stars are”
 – amateurs
 • many, over long periods
 • well organised (e.g. finding charts, networks, Web pages)
 • still find interesting objects, often find them early
 – LOSS/LOTOS
 • KAIT (first Leuschner then Lick)
 • running for over 15 years (11 years with KAIT – Weidong Li)
 • >1000 SNe discovered – all types
 • best nearby sample for SN rates
 • results are being published
 – Smith et al. 2010, Leaman et al. 2010, Li et al. 2010ab
Lick Observatory Supernova Search

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>Ia</th>
<th>Ibc</th>
<th>II</th>
<th>no classification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>929</td>
<td>372</td>
<td>144</td>
<td>399</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>40.0%</td>
<td></td>
<td></td>
<td></td>
<td>1.6%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Optimal</th>
<th>Volume limited</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>726</td>
<td>180</td>
</tr>
<tr>
<td></td>
<td>37.7%</td>
<td>18.0%</td>
</tr>
<tr>
<td></td>
<td>16.0%</td>
<td>14.6%</td>
</tr>
<tr>
<td></td>
<td>1.6%</td>
<td>1.6%</td>
</tr>
</tbody>
</table>

Leaman et al. 2010
Li et al. 2010
Nearby SN surveys

• Nearby (cont.)
 – Center for Astrophysics
 • follow-up of interesting objects – all types
 • active for the past 2 decades
 • many individual and peculiar objects
 • most extensive nearby SN Ia sample
 – critical for the cosmology (e.g. Riess et al. 1999, Jha et al. 2003, Hicken et al. 2009)
 – Carnegie Supernova Project – CSP
 • nearby and distant SN follow-up
 • all types
 • including on IR light curves
 – Hamuy et al. 2006, Phillips et al. 2007, Folatelli et al. 2010
Nearby SN surveys

- **ROTSE-III**
 - Akerlof et al. 2003

- **SN Factory**
 - see talk by Childress
 - 600 SNe in two years
 - mostly unpublished

- **Quest (Palomar/La Silla)**
 - continuation of SN Factory search in southern sky

- **CHASE**
 - new search providing mostly bright supernovae (e.g. 2010ev)

- **Catalina Real-Time Transient Survey**
 - covers 26000 °
 - 62 SNe in six months
 - publish events through VOEvents
 - Drake et al. 2009
Nearby SN surveys

- **Palomar Transient Factory**
 - see Mark Sullivan’s talk
 - >500 SNe in one year
 - most not reported to IAU
 - several peculiar objects detected
 - Avishai Gal-Yam’s talk
 - ‘unbiased’ statistics

- **PanSTARRS-1**
 - started this year
 - expect 26000 core-collapse SNe year\(^{-1}\)
 - most not reported
 - Young et al. 2008
Distant SN surveys

- **Intermediate 0.03<z<0.3**
 - **SDSS**
 - see Bob Nichol’s talk
 - Kessler et al. 2009
 - **CSP**
 - Freedman et al. 2009

- **Distant z>0.3**
 - **Danish distant SN Search**
 - Danish 1.54m telescope on La Silla
 - two year search
 - 1 Type Ia (Norgaard-Nielsen et al. 1989), 1 Type II (Hansen et al. 1989)
 - **Supernova Cosmology Project**
 - several projects (NOAO, AAT, CTIO 4m)
 - started 1991
 - **High-z SN Search Team**
 - CTIO 4m
 - started 1995
 - Schmidt et al. 1998, Riess et al. 1998, Tonry et al. 2003
Distant SN surveys

- CFHT SN Legacy Survey
 - CFHT+MegaCam
 - 4 filters, six years, rolling search all year
 - Astier et al. 2006, Howell et al. 2006, Sullivan et al. 2006ab and many more
 - ESSENCE
 - 2 filters, six years, search during 3 months per year
- GOODS HST SN Search/SHOES/PANTS
 - highest-z SNe Ia so far (z>1.2)
Some thoughts on current status

- Current SN discovery rate substantial
 - During the past decade more SNe were observed than during the millennium before (half-point is late 2003)
 - Current searches are extremely effective
 - not all supernovae are reported to the IAU any longer
 - effectively much higher statistics in the last few years
- Most reported supernovae are classified
Nearby supernovae

- More bright supernovae discovered
Surveys targeting SN progenitors

- **SPY**
 - search for white dwarf binaries that will merge within a Hubble time
- **VLT-FLAMES Survey of Massive Stars**
- **Smartt/VanDyk HST/Keck/VLT programs to detect massive stellar progenitors**
- **X-ray surveys**
 - Roelofs et al. 2008 – failed in this case, but still promising
 - X-ray all sky surveys – eROSITA?
Direct observations of SN progenitors

- White dwarf: $M \approx 10\text{mag}$
- Giant: $M \approx -4\text{mag}$

Observable distances (assume $m=26$)
- White dwarf: $D \approx 16\text{kpc}$ (100kpc for $m=30$)
- Giant: $D \approx 10\text{Mpc}$ (60Mpc for $m=30$)

Poelarends et al. 2008

$m=30$

350Mpc

280Mpc

220Mpc

180Mpc

Poelarends et al. 2008
Supernova Progenitor survey

- ~1000 white dwarfs checked for radial velocity changes → search close binaries
 - are there double degenerate white dwarfs in the solar neighbourhood?
 - discovered ~100 double degenerate systems

Napiwotzki et al. 2007
Geier et al. 2010
Other searches for SN signatures

• \(\nu\)-surveys
 – heavily discussed in the \(\nu\) community
 – science case for various current and future \(\nu\) detectors (e.g. AMANDA or ICECube)

• IR surveys (VVV, VIDEO, UltraVista)
 – just started – too early to tell
Future surveys

• Several searches/surveys continue:
 – Amateurs, LOSS, CfA, CHASE, PTF, PanSTARRS-1

• New surveys
 – SkyMapper
 • 1.35m telescope, 4 filters, 1250 ° ‘rolling’
 • expect ~400 SNe per year
 • IR follow-up organised
 • to start seriously next year
 – GAIA transient sources
 • expect ~6000 transients during mission
Future distant surveys

- **CANDELS/CLASH**
 - part of two HST multi-cycle treasury programs
 - \(z > 1.5\) SNe for rates
 - see Enikö Regös’ talk
 - Riess et al.

- **DES**
 - several hundred SNe Ia
 - see Bob Nichol’s talk
 - Bernstein et al. 2008

- **PanSTARRS-4/LSST**
 - >100,000 supernovae per year

- **EUCLID/JDEM**
 - **EUCLID**: SNe not main driver (weak lensing and BAO)
 - details by Bob Nichol
 - **JDEM**: BAO and supernovae
 - expect several thousand SNe
Cosmology - do we need more?

• Already in hand
 – >1000 SNe Ia for cosmology
 – constant ω determined to 5%
 – accuracy dominated by systematic effects
 • reddening, correlations, local field, evolution

• Test for variable ω
 – required accuracy \sim2% in individual distances
 – can SNe Ia provide this?
 • can the systematics be reduced to this level?
 • homogeneous photometry?
 • further parameters (e.g. host galaxy metallicity)
 • handle $>$100000 SNe Ia per year?
More supernovae

• Increase in interesting supernovae
 – many more general searches
 • remove paradigms
 – possible through the technological progress
 • detectors, data storage, data handling and processing
 – Need to keep the overview

• Improved understanding
 – hints on explosion physics
 – statistical samples
 • progenitor environments – ‘short fuse’ required
 • rates → clues on progenitor systems
More supernovae

• (Do we need a definition of what is a supernova?)
• Do we need a central SN database?
 – collect all SN discoveries?
 – IAU database outdated and not capable to supported most new searches
• Follow-up observations
 – classification
 – critical to explore the physics
 • explosions
 • nucleosynthesis
 • asymmetries
 • peculiarities
 • masses