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The Aharonov-Bohm effect is investigated in the Feynman path-integral formulation of quantum
mechanics. We consider an idealized situation with an electron moving in a magnetic-field-free region
outside a solenoid whose radius to length ratio is very small. The nonvanishing vector potential term in the
Lagrangian is written as an angular-velocity-dependent potential. In order to account for a singularity due

" to the presence of the solenoid itself, a periodic constraint is imposed on the path integral. The propagator
can then be evaluated using the polar-coordinate methods of Peak and Inomata. It is found that the
propagator has the general form K(@",t;7) = ), X.K,(",¥;7) where the sum is taken over all
classes of homotopic paths and the x, are a one-dimensional representation of the homotopy group. This is

the form of the propagator as conjectured by Schulman.

I. INTRODUCTION

In recent years there have been many discus-
sions in the literature of quantum mechanics on
multiply-connected spaces.! The subject is most
easily discussed from the Feynman path-integral
formulation where one may consider the various
possible paths to belong to distinct homotopy
classes, i.e., the paths cannot be continuously
deformed into each other. The propagator
K(T",7'; 7) is said to be given by a sum of partial
amplitudes

KF 75 1)= ) X K7, 75 7)), (1.1)
n

where X, is a one-dimensional unitary representa-
tion of the fundamental group for the nth homotopy
class. K, (t”,T'; 7) is presumed to be calculated by
summing over all possible paths within the nth
homotopy class. A lucid discussion of these ideas
can be found in the paper by Dowker.?

The Aharonov-Bohm (AB)* effect is an example
of an electron moving in the multiply-connected
space SO(2). The multiply-connectedness is due
to the presence of an infinitely long and infinitesi-
mally thin solenoid containing magnetic flux ®.
The magnetic field B outside of the cylinder is of
course zero (see Fig. 1). The essence of the AB
effect is that even though the electron never enters
the solenoid, there are observable effects (inter-
ference)® due to the nonvanishing of the vector po-
tential A outside the solenoid. The amount of the
interference is dependent on the confined flux.
Schulman?® has determined that the electron propa-
gator for this problem should have the same form
as Eq. (1.1) with X = exp(ie®n/c%). However,
there does not seem to be an explicit calculation
anywhere that shows to what extent the form of
Eq. (1.1) can really be obtained. Furthermore, it
is not too clear what the influence of the solenoid
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itself will be in the limit ® - 0. In the traditional
discussions® of the AB effect, the vanishing of the
flux seems to make the system indistinguishable
from one for which the underlying space is simply
connected.

In this paper we discuss the AB effect by intro-
ducing the singularity associated with the solenoid
as a periodic constraint in the path integral. This
method was first introduced by Edwards’ and later
refined by Inomata and Singh® in connection with
the problem of entangled polymers. We briefly
review this method in the next section. In Sec. III
we perform an explicit calculation for the propa-
gator associated with the AB effect and determine
it up to a Fourier transform. In Sec. IV, in order
to get some sort of closed-form result, we impose
a radial constraint on the electron so as to confine
it to the surface of a cylinder of radius R centered
on the origin. With this extra condition the Fourier
transform can be calculated in closed form. We
also consider a WKB approximation on the exact
result of Sec. III, which again allows us to evalu-
ate the Fourier integral. These two results are
noted to be very similar.

II. PATH INTEGRALS WITH A PERIODIC CONSTRAINT?®

In the Feynman path-integral formulation of
quantum mechanics it is asserted that the propa-
gator is given by

K, ¥ 1= fem[Ls@no)pin, @)
where the symbol Dr(¢) means the integrations are
to be taken over all possible paths from = 7(0) to

T”=1(7). S(¥",t')is, of course, the classical
action

T
S@E F1)= f LE, Pt .
0
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FIG. 1. An idealized experimental arrangement to
illustrate the Aharonov-Bohm effect.

In this paper we will confine ourselves to path in-
tegrations over a two-dimensional plane where
T=(r, ).

Now if there should exist a singular point in the
plane (which we shall take to be at the origin) the
space will become multiply-connected. A path en-
circling the singular point # number of times is
homotopically different from one encircling it m
number of times (m##xn). The various nonhomo-
topic configurations can be classified by the num-
ber of turns about the singularity. This is the
winding number »n where n=0,1,+2,...{ turns
counterclockwise if = 0 and n+ 1 clockwise if
n< -1). (See Fig. 2.) If we let © (0<©<27) be
the angle cos™(r” *T’) then we can write

T
f bdt=0+2mn. (2.2)
0
To incorporate the constraint
, .
f bdt=¢ (2.3)
0

into the propagator, we write

KAF",F’;T):[G(qb—fOT édt)
X exp[;—i S(¥”, F')]Df(t) . (2.9

The 6 function has the effect of selecting out the
different classes of homotopic configurations.
The total propagator will be given by

K@@', 7' 7)= f K,do. (2.5)
Using the relation
2md(x)= ] exp(ixx)dh ,
we write K, as
- - 1 +eo - ->
Ky (r", 1’5 T)=2_11 f K,(r",1'; T)exp(irg)dnr ,

(2.6)

where

K75 )= [ exp{,%; S "L, B - anblattDEe)
(2.7)

J

FIG. 2. The origin of our set of polar coordinates is
centered on the infinitely thin solenoid. Paths from
various homotopy classes are shown,

We are thus led to consider the path-integral

‘equation (2.7) in which the original Lagrangian L

has been replaced by an effect Lagrangian L’ con-
taining an angular-velocity -dependent potential,

L'=L-)\i6.

III. THE AHARONOV-BOHM EFFECT

We will proceed to calculate the propagator for
an electron moving in the magnetic-field-free re-
gion outside of a solenoid. The Lagrangian for
this system is

=§u.¥2+§7\'?. (3.1)
For the vector potential we take
K= 2 (=yienf)/ e+ y?)
27 ’

wher_g <I>_’is ’_cl\e confined flux. It is easily checked
that B=V X A=0. This potential has been widely
used to discuss the AB effect.* Following Ed-
wards’ we rewrite the second term in (3.1) as

e+ > e
C—‘A I‘—C (32)

Thus, we will evaluate the path integral (2.7) with
the effective Lagrangian

L'=} uf+ (a-2n)8,

where we have set e®/2rc=a.
Now, using the customary definition of the path
integral, we write Eq. (2.7) as

N-1

ey mr s i e =
K, (*", 7, T)—}’{IE ANfexp[h_ ; S (r,,r,_l)]n

x (d%,), (3.3)
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where T;=7(¢;), F,=1’, Fy=F", and ¢t;,~¢,,=7/N

"y o =i 2 2 ﬂ -
=¢. The partial action for a small time interval € Sy, 1) =90 2475+ " 77y cos(8,- 6,.,)

may be expressed by : +(@=NE)(8,- 6,.,) (3.4)
S!(F;, T;.,)= €L'(AT,/€,T)) ..
In polar coordinates we can write this as®'1° The exponential of Eq. (3.4) needed in Eq. (3.3) is
|
exp ZS’(F T, = expd o (r 2+ v ;%) — = 7,7, | cos(6,~ )+—7£€—B(9‘—9. ) (3.5)
73 Jr*i=1 2672 h’E J=1 !-1 “717’1'-1 i j=1 ’ .

where we have set 8=X-a/7 for now. In order to take into account contributions up to fourth order in
A6, we employ the expansions

cos(Af)—aeAf= cos(AO+ae€)+3 a’e? " (3.6)

and
0 . u

exp[ cose] ,,,_Z..o exp(zme)lm(vg> , (3.7

for small € and for |arg(u/€)|<m/2.'* The exponential (3.5) now becomes
i - - = .
exp[;_i S'(rjyrj-l)]= Z R(mﬁB)(/rf’rJ-l) exp[zmj( Bj- 91_1)] y (3.8)
mj==

where we have also made use of the asymptotic expression for the modified Bessel function

1(%)~( ;,—u)/ exp| %~ $0m*= 1) S 0] (3.9)

and defined

iU -3 U7 ¥4-
R s 5,7 5,)= exp[ﬁ (r+ 7’5-12)]1(»‘,*5) <_€ﬁ;1 ) .

The propagator K, then becomes

K, 0%, 72, 0 1) =lima, [+ fH 3 Ry ,7 10 explivn 6, —e_l)]H(y,dr,de,), (3.10)

N-<eco
j=1 mj==co
where v =v', vy=7", 6,=6', and 6,=6”. After interchanging the mult1p11cat10n and summations, the
angular integrations can be performed with the help of the orthogonality relation

2r
if expli(m’—~m)6]do=5,,,.
2m J,

We obtain

K,\(r",0" 7', 0 7)= f: expim(6” - 6)]Qp.s,v", 7", T), (3.11)
where o

Qmss) ¥, 7' T)= 11m (2m)¥-1A f fHR(m,,B)('rJ,yj_l) H(r ar,). , (3.12)

Now resubstituting 8=\ — a/7, and using the definition (2.6), we find

-, - 1 e 3R . ’ .
K, (r", 7' T)=§77 Z explim(6” - 0")+ N 1@ (ar-asmy @, 73 T)dN .

m=-co

Making the change of variables A~ Xx—m+ &/, we have

K, (F", T 7 =2iﬂf: i exp[im(a"— 9'—¢)+i()\+%>¢]%(r",r'; T)dx.

m== oo
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Using the identity

+00 e
Z exp(im )= 21 E 5(6+ 2mn)

we gt;t
K (F",7;7)= Z 5(6"- ¢’ ¢+2nn)f exp[ (M ﬂ> ]Qh(r”,r';r)dh. ‘ (3.13)

n=-o

The 6 function is selecting out homotopic paths if
we interpret n as the winding number. The total
propagator is

K@, 75 0= [ Kaag= 3 KL,
n=—e (3.14)

where

K(r T 7)= exp[ﬁ(e” 6'+21m)]

X f exp[ir(6” - 6’ + 21n)]Q,dX .

(3.15)
We can express Eq. (3.12) in the form
K(T", 7' 7)= exp[i,a(e”— 0’)]
+00 ia -
X E exp ?21111]1(", (3.16)
n==c
where
1'{,,=f " exp[iN(6"— 6 + 27n)]@,d . (3.17)

The overall angle-dependent phase factor in
(3.15) can be removed if we use

"// T) _[K( " "1 T)‘/) ] O)dl"

and define the new wave functions and propagator
as

‘/)new(;’ T)= exp(%‘a 9) lpold(;! T) ’

-, > o o
Ko 7,5 7) = exp [ - B (07 00| K, 775 ).

We can then write our propagator as

-y - <= nied - '
”n - -
KGE" 75 7)= Zﬁ exp[ 2 ]K". (3.18)
This is the form as conjectured by Schulman.?

We have not yet evaluated the radial path inte-
gral (3.12). As this has already been done else-
where, we only present the result which is?

f ,
Q= <2T:fzr > exp[zm (e )]

—ipr'r”
x1 ( T > ’
where the normalization constant A =
Equation (3.15) now becomes

RF,¥5m)= <2n?m>ex"[z;;(y ””]
X f exp[in(6” - 6’ + 2mn) ]I,

—iur'r” 19
x <——~m )d?\. (3.19)

(w/2mien)V.

IV. EVALUATION OF K,

We have obtained the partial amplitude K ,as a
Fourier transform in Eq. (3.19). Owing to the
complicated dependence on A of the modified Bes-
sel function, we cannot obtain a closed form. To
get some idea of the behavior of K, we will first
consider the special case of the electron with a
radial constraint, i.e., constrained to the surface
of a cylinder of radius R centered on the origin.

In order to impose the radial constraint, we go
back to Eq. (3.12) and insert 5(F ;- R) in all the
N-1 integrals. This will yield®

Q,L=(4—W§11—51-72—exp(—i)\ﬁ7/21) , (4.1)
where I=R2u and the normalization constant has
been chosen as
{2mh’€

n

A=R exp(—zﬁe/u)]

Now using Egs. (4.1) and (3.16) we get

= (2miT\"1/?
K"=( A )

The total propagator will now be

-1/2
K(6", 05 7)= (211;7;‘7)

exp[il(6” - 6+ 2mn)?/27T] . (4.2)

X exp[zl;i— (0"—0"+ 27"1)2] . (4.3)
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This is the same form of the propagator for a
rigid rotator as obtained by Schulman,'? except
that there is an additional phase factor dependent
on the magnetic flux. Now, to examine the propa-

gator without the imposition of extra constraints,
J

> - iﬁT 1/2 ,
K ( "l T)= ( 2,”/;%1,) (éua,/,rll) exp[ r'2+r")-

Evaluating the Fresnel integral and then dropping
terms in the exponential that are quadratic and
higher in powers of 7 we obtain

[ (n . M & ’2 "2
K (x", 105 )= (zmz-r)e"p[zm(r 7 )]

7
X exp[z—'w—z—(e”— 0"+ 277n)2] .

2hT
(4.5)

Thus we see that this propagator has the same
angular dependence as that of the rigid rotator in
Eq. (4.2). It is interesting to note that without the
use of the periodic constraint as described in
Sec. II, the form of the propagator in Eq. (3.18)
cannot be obtained. This is because there would
be no way to distinguish the propagators found by
path integration over each class of homotopic
paths. In fact, they would all have the form of the
propagator for a free particle in two dimensions.

V. DISCUSSION

The class of problems treated exactly by the
Feynman path-integral approach is very limited.
Besides, the extension to non-Cartesian coordi-
nates is not straightforward.®!%!* Qur solution of
the AB effect in polar coordinates extends the
range of problems solvable directly by functional
integration. A unique feature of this approach is
that one can take into account the multiply-connec-
tedness of the space induced by the solenoid itself.
This shows that even if the magnetic flux confined
to the solenoid should vanish, there should still be

inT
ur'r”

we evaluate Eq. (3.18) using a WKB approximation.
We use the asymptotic expansion (3.9) but now
consider the expression valid for 7Z— 0 instead of

€ very small. In this approximation Eq. (3.18) be-
comes

]fm exp[iN(6" - 6’ + 2mn)] exp(ih—-r}\2 )dx . (4.4)

IJ.,’.I?,”

{

some observable effect. This could be interpreted
as the scattering of the electrons from an infinitely
long cylinder. As was pointed out, in the usual
discussions of the AB effect, taking ¢ =0 gives
results indistinguishable from those of a simple
connected space. From topological arguments,
the form of the propagator was conjectured to be
that of Eq. (1.1).2 Our calculations for obtaining
Eq. (3.18) seem to bear out these arguments. It
should be noted, however, that without the impo-
sition of the periodic constraint described in Sec.
11,8 the appropriate form of the propagator cannot
be obtained. One would find that there would be no
way to distinguish between the propagators of dif-
ferent homotopy classes; they would all have the
form of a free-particle propagator.

Our resulting Eq. (3.18) was given in integral
form. Imposing a radial constraint on the electron
allowed us to evaluate the integral and led to a re-
sult similar to that of the rigid rotator.

Finally, we feel that the approach used in this
paper could be extended to problems where simi-
larly topological features are involved. These
might include the problem of electron propagation
in a periodic lattice and the recent interest in
topological solitons and instantons.
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