Microscopium II : ESO CCD Test Report
General information
EEV 44-82-1-A57
CCD Name : Microscopium II
Grade : Science
Serial Number : 02111-05-02
Type : Backside, Single layer AR Pixel size 15 x 15 μm
Number of photosensitive pixels 2048 x 4102 [HxV]
Number of outputs : 2
Overall rating :
Measurement made by  Fabrice Christen the 17/09/02
Data reduced by  Fabrice Christen the 17/10/02
Setup D-Marc 2
Position in the head A
Tested with the CCD MuscaAustralis II
Concession form /
Volt table
Channel voltage potential 8.85
This table defines the voltages which will be applied to peripherals
at initialisation time. It also defines the high and low limits which may
be set for these voltages
BIASBRD is for the EEV CCD-44 in the mosaic 
# BRD_ID  PERIPH_ID 
# CONNECTOR P0 - A
LOW HIGH TOLERANCE INIT_VAL
BRD_ANABIAS0 ANB_PRESET_VOLT_A -3500 -1000 10000 -3500 #OG1R
BRD_ANABIAS0 ANB_PRESET_VOLT_B -2500 -1000 10000 -2500 #OG2R
BRD_ANABIAS0 ANB_PRESET_VOLT_C 2000 25000 10000 19200 #ODR
BRD_ANABIAS0 ANB_PRESET_VOLT_D 2000 15000 10000 10350 #RDR
BRD_ANABIAS0 ANB_PRESET_VOLT_E 2000 25000 10000 25000 #JDR
BRD_ANABIAS0 ANB_PRESET_VOLT_F 0 0 0 0 #not used
BRD_ANABIAS0 ANB_PRESET_VOLT_G 0 0 0 0 #not used
BRD_ANABIAS0 ANB_PRESET_VOLT_H 0 0 0 0 #not used
# CONNECTOR PO - B
LOW HIGH TOLERANCE INIT_VAL
BRD_ANABIAS0 ANB_PRESET_VOLT_I -3500 -1000 10000 -3500 #OG1L
BRD_ANABIAS0 ANB_PRESET_VOLT_J -2500 -1000 10000 -2500 #OG2L
BRD_ANABIAS0 ANB_PRESET_VOLT_K 2000 25000 10000 19200 #ODL
BRD_ANABIAS0 ANB_PRESET_VOLT_L 2000 15000 10000 10350 #RDL
BRD_ANABIAS0 ANB_PRESET_VOLT_M 2000 25000 10000 25000 #JDL
BRD_ANABIAS0 ANB_PRESET_VOLT_N 0 0 0 0 #not used
BRD_ANABIAS0 ANB_PRESET_VOLT_O 2000 19000 10000 18000 #DDLR
BRD_ANABIAS0 ANB_PRESET_VOLT_P 0 0 0 0 #not used
#The anabias board also has an opto isolated peripheral
BRD_ANABIAS0 ANB_OPTOOUT 0 32767 4 255
CLOCKDRIVER BOARD 0 is for the EEV CCD44 in the mosaic
# BRD_ID  PERIPH_ID
#   CONNECTOR PO-A 
LOW HIGH TOLERENCE INIT_VAL
BRD_CLKDRV0 CLKDRV_DAC0_LO -5000 -5000 1000 -5000 #SWL
BRD_CLKDRV0 CLKDRV_DAC0_HI 5000 5000 1000 5000
BRD_CLKDRV0 CLKDRV_DAC1_LO -5000 -5000 1000 -5000 #SWR
BRD_CLKDRV0 CLKDRV_DAC1_HI 5000 5000 1000 5000
BRD_CLKDRV0 CLKDRV_DAC2_LO -5000 -5000 1000 -5000 #RF3
BRD_CLKDRV0 CLKDRV_DAC2_HI 5000 5000 1000 5000
BRD_CLKDRV0 CLKDRV_DAC3_LO -5000 -5000 1000 -5000 #RF2L
BRD_CLKDRV0 CLKDRV_DAC3_HI 5000 5000 1000 5000
BRD_CLKDRV0 CLKDRV_DAC4_LO -5000 -5000 1000 -5000 #RF1L
BRD_CLKDRV0 CLKDRV_DAC4_HI 5000 5000 1000 5000
BRD_CLKDRV0 CLKDRV_DAC5_LO -5000 -5000 1000 -5000 #RF2R
BRD_CLKDRV0 CLKDRV_DAC5_HI 5000 5000 1000 5000
BRD_CLKDRV0 CLKDRV_DAC6_LO -5000 -5000 1000 -5000 #RF1R
BRD_CLKDRV0 CLKDRV_DAC6_HI 5000 5000 1000 5000
BRD_CLKDRV0 CLKDRV_DAC7_LO -6000 -6000 1000 -6000 #DG
BRD_CLKDRV0 CLKDRV_DAC7_HI 6000 6000 1000 6000
#     CONNECTOR PO-B
LOW HIGH TOLERENCE INIT_VAL
BRD_CLKDRV0 CLKDRV_DAC8_LO -12000 -4000 1000 -8000 #IF1
BRD_CLKDRV0 CLKDRV_DAC8_HI -2000 3000 1000 2000
BRD_CLKDRV0 CLKDRV_DAC9_LO -12000 -4000 1000 -8000 #IF2
BRD_CLKDRV0 CLKDRV_DAC9_HI -2000 3000 1000 2000
BRD_CLKDRV0 CLKDRV_DAC10_LO -12000 -4000 1000 -8000 #IF3
BRD_CLKDRV0 CLKDRV_DAC10_HI -2000 3000 1000 2000
BRD_CLKDRV0 CLKDRV_DAC11_LO 0 0 1000 0 #empty
BRD_CLKDRV0 CLKDRV_DAC11_HI 0 0 1000 0
BRD_CLKDRV0 CLKDRV_DAC12_LO -6000 -4000 1000 -6000 #FRL
BRD_CLKDRV0 CLKDRV_DAC12_HI 6000 8000 1000 6000
BRD_CLKDRV0 CLKDRV_DAC13_LO -6000 -4000 1000 -6000 #FRR
BRD_CLKDRV0 CLKDRV_DAC13_HI 6000 8000 1000 6000
#
# Gain should be interpreted as follows
# There are two gains, gain1 is on the preamp, gain2 is on the video board.
# Gain1 =  
#     3 == 1.5
#     1 == 2.25
#     0 == 3.0
#
# Gain2 =
#     0 = Minimum (2.5) 
#     1 = Maximum (12.5) 
#
# BRD_ID  PERIPH_ID  LOW HIGH TOLERANCE INIT_VAL
BRD_VIDBRD0 VID_GAIN1_CHAN0 0 3 0 1
BRD_VIDBRD0 VID_GAIN1_CHAN1 0 3 0 1
BRD_VIDBRD0 VID_GAIN1_CHAN2 0 3 0 1
BRD_VIDBRD0 VID_GAIN1_CHAN3 0 3 0 1
BRD_VIDBRD0 VID_GAIN2_CHAN0 0 1 0 0
BRD_VIDBRD0 VID_GAIN2_CHAN1 0 1 0 0
BRD_VIDBRD0 VID_GAIN2_CHAN2 0 1 0 0
BRD_VIDBRD0 VID_GAIN2_CHAN3 0 1 0 0
BRD_VIDBRD0 VID_FILT_CHAN0 0 3 0 0
BRD_VIDBRD0 VID_FILT_CHAN1 0 3 0 0
BRD_VIDBRD0 VID_FILT_CHAN2 0 3 0 0
BRD_VIDBRD0 VID_FILT_CHAN3 0 3 0 0
BRD_VIDBRD0 VID_TESTVID_CHAN0 0 1 0 0
BRD_VIDBRD0 VID_TESTVID_CHAN1 0 1 0 0
BRD_VIDBRD0 VID_TESTVID_CHAN2 0 1 0 0
BRD_VIDBRD0 VID_TESTVID_CHAN3 0 1 0 0
# Video Offsets are in 0.001 volts
# BRD_ID  PERIPH_ID  LOW HIGH TOLERANCE INIT_VAL
BRD_VIDBRD0 VID_OFFSET_CHAN0 0 65535 6553 0
BRD_VIDBRD0 VID_OFFSET_CHAN1 0 65535 6553 0
BRD_VIDBRD0 VID_OFFSET_CHAN2 0 65535 6553 0
BRD_VIDBRD0 VID_OFFSET_CHAN3 0 65535 6553 0
Quantum Efficiency
Clock mode :  225kpix/s HG
Conversion factor 1.01e-/ADU Load value for Load value
Wav. QE% QE error PRNU rms% Wav. QE% QE error PRNU rms%
300       660 69.1 0.1 0.8
310       680 66.7 0.1 0.8
320 53.1 0.1 3.6 700 64.1 0.2 0.9
330 55.7 0.1 3.5 720 61.2 0.1 0.9
340 54.7 0.2 3.5 740 57.7 0.1 0.9
350 58.1 0.1 3.5 750 55.7 0.1 0.9
360 58.1 0.1 3.4 760 53.6 0.1 0.9
370 61.3 0.1 3.0 780 49.5 0.1 1.0
380 68.1 0.1 2.2 800 45.7 0.1 1.0
390 73.4 0.1 1.7 820 41.2 0.1 1.0
400 76.2 0.1 1.4 840 37.7 0.1 1.0
420 78.7 0.2 1.1 850 35.2 0.1 1.0
440 79.5 0.2 1.0 860 32.7 0.1 0.9
450 79.4 0.3 0.9 880 27.5 0.0 1.3
460 79.2 0.5 0.9 900 22.8 0.0 1.1
480 78.6 0.1 0.9 920 17.9 0.0 1.3
500 77.9 0.2 0.9 940 13.3 0.0 1.6
520 76.9 0.1 0.9 950 11.5 0.0 1.3
540 76.3 0.1 0.8 960 9.6 0.0 1.1
550 76.0 0.1 0.8 980 6.3 0.0 1.1
560 75.6 0.1 0.8 1000 3.8 0.0 1.4
580 74.7 0.0 0.8 1020      
600 73.7 0.0 0.8 1040 0.7 0.0 3.2
620 72.5 0.1 0.8 1060      
640 71.0 0.1 0.8 1080      
650 70.1 0.1 0.8 1100 0.1 0.0 4.3
Table 1: Measurements of the quantum efficiency and PRNU
Quantum efficiency, comparison
In this section you can compare the QE we measured with the testbench and:
l QE Minimum specification
l Typical QE
l QE from Marconi
Figure 1: Comparison between the QE measured by ESO, the QE measured by Marconi, ESO specification and minimum specification Figure 2: Ratio between the ESO measurements and the ESO minimum specification
Quantum efficiency, special specification
Special specification
Wavelength (nm) Minimum spec.(%) ESO measure. (%) Result
350 50 58.1 OK
400 80 76.2 Under the minimum spec.
650 80 70.1 Under the minimum spec.
900 25 22.8 Under the minimum spec.
Conclusion: No this ccd is not in the 25%
Table 2: Minimum specification for 25% of the ccds.
Difference between QE measurements made by ESO and Marconi
Comparison QE ESO and Marconi
Wavelength (nm) QE ESO (%) QE E2V (%) Difference (ESO - E2V %) Relative diff. (E2V as reference %) Ratio QE ESO / QE E2V
350 58.1 48.5 9.6 19.8 1.2
400 76.2 74.9 1.3 1.7 1.0
500 77.9 81.9 -4.0 -4.9 1.0
650 70.1 73.7 -3.7 -5.0 1.0
Table 3: Difference and relative difference between ESO measurements and E2V
Figure 3: Graphic representation of the fdifference and the relative difference Figure 4: Ration between the ESO measurements and the E2V Measurements
PRNU comparison
In this section you can compare the PRNU we measured at ESO and:
l PRNU Minimum specification
l PRNU from Marconi
Figure 5: Comparison between the PRNU measured by ESO, the PRNU measured by Marconi, and the maximum specification Figure 6: Ratio between the ESO measurements and the maximum specification
Comparison PRNU ESO and PRNU Marconi
Wavelength (nm) PRNU ESO (rms %) Maximum spec. PRNU E2V Difference (ESO - E2V) Relative difference (E2V as reference) Ratio PRNU ESO / PRNU E2V
320 3.6 6.0 / / / /
350 3.5 5.0 2.8 0.7 23.9 1.2
400 1.4 2.5 1.5 -0.1 -8.7 0.9
500 0.9 2.0 1.4 -0.5 -38.1 0.6
Table 4: difference and relative difference between ESO and E2V measurements
Comparison with the contract
In this section you will see the if the values we have measured for the QE and the PRNU are in accordance with the contract.
Wavelength (nm) QE PRNU
320 OK OK
340 OK /
350 OK OK
360 OK /
380 OK /
400 OK OK
450 Below the specification OK
500 Below the specification OK
550 Below the specification /
600 Below the specification /
650 Below the specification /
700 Below the specification /
750 OK /
800 OK /
850 OK /
900 Below the specification /
950 Below the specification /
1000 Below the specification /
Table 5: Comparison between the values we have measured and the specifications in the contract
Cosmetic
Click here to see the images
Cosmetic defects
In this section we expose the hot pixel, the dark pixel, the trap and the very large trap we have found.
Hot pixel A hot pixel provides a signal of > 60 e- / pixel / hour.
Very bright pixel a very bright pixel provides a signal of > 200000 e-/pixel/hour
Dark pixel A dark pixel is one with 50% or less than the average output for uniform intensity light level, measured with a flat field level around 500 photo-electrons
Trap A trap is defined as a pixel that captures more than 10 electrons, measured with a flat field level around 500 photo-electrons.
Very large trap A very large trap is defined as a pixel that captures more than 10 000 electrons, measured with a flat field level around 90% of full well capability.
Bad column A bad column is 10 or more contiguous hot or dark pixels in a single column or a very bright pixel or a very large trap.
  Hot pixel Dark pixel Very bright pixel (a) Trap Very large trap (b) Sup. 10 contiguous pixels (c) Total bad column (a+b+c)
ESO 1 31 0 6 4 1 5
E2V 48 8 7 2 1 11
Table 6: Cosmetic defects measured by ESO and E2V
Dark and Bias
Click here to see the images
Readout noise and conversion factor
Conversion factor, recommend specification: 0.55 e-/pixel/hour
Maximum readout noise at 50kpix/s: 2 e-
Maximum readout noise at 225kpix/s: 2.8 e-
Conversion factor error Readout noise error
50kpix/s Left port broken port   broken port  
Right port 0.50 0.01 5.2 0.2
225kpix/s Left port broken port   broken port  
Right port 0.52 0.01 4.8 0.2
Table 7: Readout noise and Conversion factor measured at 50 and 225kpix/s
Linearity
Minimum specification: 1 (%)
Rms non linearity (%) 0.23
Peak to peak non linearity (%) 0.66
Table 8: Linearity
Click here to see the graphics
Dark current
Exposure time (s): 3600
Readout mode: 50kpix/s
Port: Right
Minimum specification: 2 e-/pixel/hour
Dark current error
0.74 0.20 ADU/pixel/hour
0.37 0.10 e-/pixel/hour
Table 9: Dark current in electron per pixel and per hour
Charge Transfer Efficiency (CTE)
Method used: EPER
Minimum specification: 0.999995
CTE (ESO) CTE (E2V)
CTE Serial (Horizontal) Left Not available 0.999996
CTE Serial (Horizontal) Right 0.999997 0.999995
CTE Parallel (Vertical) 0.9999994 0.999999
Table 10: Charge transfer efficiency measured at 50 kpix/s and the high gain amplification


Back to the overview page ESO Test Reports for the OmegaCAM CCDs