Outline

• DALSA Corp.

• CCD Image Sensors
 • Architecture
 • Ultra-low dark current
 • Backside thinned devices

• CMOS Image Sensors
 • Wafer-scale
 • Radiation hardness

• Summary
DALSA Corp at a Glance

- Established in 1980
- Headquarters in Waterloo ON, Canada
- Listed at Toronto Stock Exchange
 - Stock Symbol: DSA (TSX)
 - Shares Outstanding: ~20M

![Revenue and Net Income Chart](chart.png)
DALSA Corp – Our Businesses

- Semiconductor fab - Bromont, Canada
- CCD & CMOS image sensors
- Digital cameras
- Vision processors & software

Image sensors

MEM technology
DALSA Corp – Our Businesses

- Semiconductor fab - Bromont, Canada
- **CCD & CMOS image sensors**
- Digital cameras
- Vision processors & software

Professional DSC

Broadcast & video
DALSA Corp – Our Businesses

- Semiconductor fab - Bromont
- **CCD & CMOS image sensors**
- Digital cameras
- Vision processors & software

Medical X-ray & Dental applications
DALSA Corp – Our Businesses

• Semiconductor fab - Bromont
• **CCD & CMOS image sensors**
• Digital cameras
• Vision processors & software

Scientific & Space

Aerial Photogrammetry
DALSA Corp – Our Businesses

- Semiconductor fab - Bromont, Canada
- CCD & CMOS image sensors
- Digital cameras
- Vision processors & software
Outline

• DALSA Corp.

• CCD Image Sensors
 • Architecture
 • Ultra-low dark current
 • Backside thinned devices

• CMOS Image Sensors
 • Wafer-scale
 • Radiation hardness

• Summary
CCD Image Sensor Architecture

- FF- & FT-CCD
- Bi-directional registers
- Multiple readout amplifiers
- 1…22…60… Mpixels
- Colour & monochrome
- Up to 100 MHz pixel rate per output

Manoury et al., IEDM Tech. Dig. 2008, pp. 263
CCD Image Pixel Architecture (1)

Cross-section a-a’

Cross-section b-b’

Gapless micro-lenses
• Thin membrane poly-silicon gate
 → High quantum efficiency
• Non-overlapping gates
 → Low RC
 → Reduced power dissipation
• Low-Ohmic interconnects
 → Fast charge transport
• Excellent pixel separation
 → High MTF
CCD Image Pixel Architecture (3)

- 4-phase buried-channel
- Vertical overflow drain to handle overexposure
- Low dark current
- High charge capacity
- Fast electronic shuttering

• DALSA Corp.

• **CCD Image Sensors**
 • Architecture
 • *Ultra-low dark current*
 • Backside thinned devices

• **CMOS Image Sensors**
 • Wafer-scale
 • Radiation hardness

• **Summary**
Dark Current in Image Pixels

Dark current generation can be divided in three components:

\[I_{\text{Dark}} = I_{\text{Surface}} + I_{\text{Depletion}} + I_{\text{Bulk}} \]

\[= qn_i \left(S_g + \frac{W}{\tau_g} + \frac{n_i D_n}{N_A L_n} \right) \]

Suppression

- **\(I_{\text{Surface}} \):** interface of the buried channel biased into inversion
 \(\rightarrow \) MPP

- **\(I_{\text{Bulk}} \):** built-in potential barrier reduces carrier diffusion
 \(\rightarrow \) vertical anti-blooming

Bogaart et al., IEEE TED (2009) accepted
CCD image sensors - Ultra-low dark current (1)

Electronic shuttering

Multi-pinned phase

Anti-blooming

All-gates pinning (AGP)

Cross-section a-a’

Cross-section b-b’

Bosiers et al., IEEE TED 42, 1449 (1995)
Peters et al., IEDM Tech. Dig. 2004, pp. 993
CCD Image Sensors – Ultra-low dark current (2)

Dark images at room temperature with 6 s integration time (equally contrast enhanced)
80x reduction
Dark current over full well factor (DCFF) improved 28x

Allows low-light imaging, long integration times, and astronomical observations at elevated temperatures

80 fA/cm² @ 10 °C

Bogaart et al., IEEE TED (2009) accepted
Outline

• DALSA Corp.

• CCD Image Sensors
 • Architecture
 • Ultra-low dark current
 • Backside thinned devices

• CMOS Image Sensors
 • Wafer-scale
 • Radiation hardness

• Summary
CCD Image Sensors - Backside thinned devices (1)

- Backside thinning: p⁻-epi on p⁺ and SOI substrates
- Die thinning up to 10 × 10 cm² devices
- Wafer level thinning on 6” wafers
- Si-thickness ~ 8..12 µm
- In-bumps, OK at cryogenic temperatures

CCD
~ 12 µm

Substrate
CCD Image Sensors - Backside thinned devices (2)

- New results
- Optimized for UV
- 16 µm pixel, ~ 10 µm Si-thickness
- 20 nm HfO₂
- 15 nm HfO₂

Measured QE (%) vs. Wavelength (nm)

VIS-NIR
Outline

• DALSA Corp.

• CCD Image Sensors
 • Architecture
 • Ultra-low dark current
 • Backside thinned devices

• CMOS Image Sensors
 • Wafer-scale
 • Radiation hardness

• Summary
CMOS Image Sensors – Wafer-scale (1)

- 8” wafer, p-substrate
- 77 x 145 mm² active area
- 33.55 µm pixel pitch
- 2,304 x 4,320 resolution
- Buttable on three sides
- Radiation-hard pixel design
CMOS Image Sensors – Wafer-scale (2)

- 2 x 3 CMOS sensors tiled to CsI-coated FOP
- 231 x 290 mm2 active area
- 6,912 x 8,640 resolution (60 Mpixel)
Classical Pixel

- LOCOS
- positive charge trapping
- enhanced thermal generation
- PHOTO DIODE
- N-WELL
- P- SUBSTRATE
- X-RAY

Diagram with labels:
- reset
- Photo Diode
- Source Follower
- select
- Out

Graph:
- Dark increment after X-ray
- X-ray Cobalt60 (Gray)
- Increment factor
- Dark current increment
- after 144 hours RT
CMOS Image Sensors – Radiation hardness (2)

Radiation Hard PPD Pixel

![Graph showing radiation hardness](image)

100x better radiation hard
DALSA CMOS imager before and after radiation.

Output (# electrons)

Illumination level (Arb. Units)

Non-linearity (%)
Summary

• World record ultra-low dark current CCD image sensor with All-Gates Pinning
 » 1.5 pA/cm² @ 60 °C
 » 0.08 pA/cm² @ 10 °C
• Dark current over full well factor (DCFF) improved 28x (6 µm pixel)
• Charge transport efficiency, anti-blooming, and electronic shuttering performance are not compromised
• Die level – 10x10 cm² – and 6” wafer level BST CCD
 » UV – QE 94% @ 240 nm
 » VIS – QE 97% @ 565 nm

• 8” Wafer scale buttable CMOS image sensor
• PPD pixel design, radiation hardness 100x better
Thank you for your attention

Info: www.dalsa.com/sensors/
E-mail: erik.bogaart@dalsa.com