eso1819es-cl — Comunicado científico

VLT hace el test más preciso de la relatividad general de Einstein fuera de la Vía Láctea

21 de Junio de 2018

Utilizando el instrumento MUSE, instalado en el VLT ( Very Large Telescope) de ESO, en Chile, y el Telescopio Espacial Hubble de NASA/ESA, un equipo de astrónomos ha realizado la prueba más precisa hecha hasta el momento de la teoría general de la relatividad de Einstein fuera de la Vía Láctea. La cercana galaxia ESO 325-G004 actúa como una fuerte lente gravitacional, distorsionando la luz que proviene de una galaxia lejana que se encuentra detrás de ella y creando un anillo de Einstein alrededor de su centro. Comparando la masa de ESO 325-G004 con la curvatura del espacio a su alrededor, los astrónomos descubrieron que la gravedad a estas escalas de distancias astronómicas se comporta según lo predicho por la relatividad general. Esto descarta algunas teorías alternativas de la gravedad.

Utilizando el instrumento MUSE, instalado en el VLT de ESO, un equipo dirigido por Thomas Collett, de la Universidad de Portsmouth (Reino Unido) calculó primero la masa de ESO 325-G004 midiendo el movimiento de las estrellas de esta galaxia elíptica cercana.

Collett explica: “Se utilizaron datos del VLT (Very Large Telescope) de Chile para medir cuán rápido se movían las estrellas de ESO 325-G004. Esto permitió inferir cuánta masa debe haber en la galaxia para mantener estas estrellas en órbita”.

Pero el equipo también pudo medir otro aspecto de la gravedad. Usando el Telescopio Espacial Hubble de NASA/ESA, observaron un anillo de Einstein resultante de la distorsión ejercida por ESO 325-G004 en la luz procedente de una galaxia distante. Observando el anillo, los astrónomos pudieron medir cómo la luz (y, por tanto, el espacio-tiempo), se desvían por la enorme masa de ESO 325-G004.

La teoría de la relatividad general de Einstein predice que los objetos deforman el espacio-tiempo a su alrededor, haciendo que cualquier luz que pase cerca sea desviada. El resultado es un fenómeno conocido como lente gravitacional. Este efecto sólo es perceptible con objetos muy masivos. Se conocen unas cien lentes gravitacionales fuertes, pero la mayoría están demasiado lejos como para poder medir con precisión su masa. Sin embargo, la galaxia ESO 325-G004 es una de las lentes más cercanas, a apenas 450 millones de años luz de la Tierra.

Collett continúa: “Gracias a MUSE, conocemos la masa de la galaxia en primer plano y, gracias a Hubble, hemos medido la cantidad del efecto de lente gravitacional que vemos. Luego, comparamos estas dos maneras de medir la fuerza de la gravedad y el resultado es justo lo que predice la relatividad general con una incertidumbre de sólo un nueve por ciento. Esta es la prueba más precisa de la relatividad general fuera de la Vía Láctea realizada hasta la fecha. ¡Y utilizando una sola galaxia!”.

La relatividad general ha sido puesta a prueba con exquisita precisión a escalas del Sistema Solar, y se han estudiado con mucho detalle los movimientos de estrellas alrededor del agujero negro del centro de la Vía Láctea, pero previamente no se habían hecho pruebas tan precisas a escalas astronómicas más grandes. Probar las propiedades de largo alcance de la gravedad es de vital importancia para validar nuestro modelo cosmológico actual.

Estos hallazgos pueden tener importantes implicaciones para los modelos de gravedad alternativos a la relatividad general. Estas teorías alternativas predicen que los efectos de la gravedad en la curvatura del espacio-tiempo “dependen de la escala”. Esto significa que la gravedad debería comportarse de manera diferente a escala de grandes distancias astronómicas con respecto a las escalas más pequeñas del Sistema Solar. Collett y su equipo han descubierto que es poco probable que esto sea así, a menos que estas diferencias sólo se produzcan a escalas de distancias de más de 6000 años luz.

El universo es un lugar increíble que nos proporciona esas lentes que podemos usar como laboratorios”, añade el miembro del equipo Bob Nichol, de la Universidad de Portsmouth. “Es muy satisfactorio utilizar los mejores telescopios del mundo con el objetivo de desafiar a Einstein y averiguar, al final, cuánta razón tenía”.

Información adicional

Este trabajo de investigación se ha presentado en el artículo científico titulado “A precise extragalactic test of General Relativity”, por Collett et al., y aparece en la revista Science.

El equipo está formado por T. E. Collett (Instituto de Cosmología y Gravitación, Universidad de Portsmouth, Portsmouth, Reino Unido); L. J. Oldham (Instituto de Astronomía, Universidad de Cambridge, Cambridge, Reino Unido); R. Smith (Centro de Astronomía Extragaláctica, Universidad de Durham, Durham, Reino Unido); M. W. Auger (Instituto de Astronomía, Universidad de Cambridge, Cambridge, Reino Unido); K. B. Westfall (Instituto de Cosmología y Gravitación, Universidad de Portsmouth, Portsmouth, Reino Unido; Observatorios de la Universidad de California  – Observatorio Lick, Santa Cruz, EE.UU.); D. Bacon (Instituto de Cosmología y Gravitación, Universidad de Portsmouth, Portsmouth, Reino Unido); R. C. Nichol (Instituto de Cosmología y Gravitación, Universidad de Portsmouth, Portsmouth, Reino Unido); K. L. Masters (Instituto de Cosmología y Gravitación, Universidad de Portsmouth, Portsmouth, Reino Unido); K. Koyama (Instituto de Cosmología y Gravitación, Universidad de Portsmouth, Portsmouth, Reino Unido); R. van den Bosch (Instituto Max Planck de Astronomía, Königstuhl, Heidelberg, Alemania).

ESO es la principal organización astronómica intergubernamental de Europa y el observatorio astronómico más productivo del mundo. Cuenta con el respaldo de quince países: Alemania, Austria, Bélgica, Dinamarca, España, Finlandia, Francia, Italia, Países Bajos, Polonia, Portugal, el Reino Unido, República Checa, Suecia y Suiza, junto con el país anfitrión, Chile. ESO desarrolla un ambicioso programa centrado en el diseño, construcción y operación de poderosas instalaciones de observación terrestres que permiten a los astrónomos hacer importantes descubrimientos científicos. ESO también desarrolla un importante papel al promover y organizar la cooperación en investigación astronómica. ESO opera en Chile tres instalaciones de observación únicas en el mundo: La Silla, Paranal y Chajnantor. En Paranal, ESO opera el Very Large Telescope, el observatorio óptico más avanzado del mundo, y dos telescopios de rastreo. VISTA (siglas en inglés de Telescopio de Rastreo Óptico e Infrarrojo para Astronomía) trabaja en el infrarrojo y es el telescopio de rastreo más grande del mundo, y el VST (VLT Survey Telescope, Telescopio de Rastreo del VLT) es el telescopio más grande diseñado exclusivamente para rastrear el cielo en luz visible. ESO es el socio europeo de un revolucionario telescopio, ALMA, actualmente el mayor proyecto astronómico en funcionamiento del mundo. Además, cerca de Paranal, en Cerro Armazones, ESO está construyendo el ELT (Extremely Large Telescope), el telescopio óptico y de infrarrojo cercano de 39 metros que llegará a ser “el ojo más grande del mundo para mirar el cielo”.

Las traducciones de las notas de prensa de ESO las llevan a cabo miembros de la Red de Divulgación de la Ciencia de ESO (ESON por sus siglas en inglés), que incluye a expertos en divulgación y comunicadores científicos de todos los países miembros de ESO y de otras naciones.

El
nodo español de la red ESON está representado por J. Miguel Mas Hesse y Natalia Ruiz Zelmanovitch.

Enlaces

Contactos

Thomas Collett
Institute of Cosmology and Gravitation — University of Portsmouth
Portsmouth, UK
Tlf.: +44 239 284 5146
Correo electrónico: thomas.collett@port.ac.uk

Richard Hook
ESO Public Information Officer
Garching bei München, Germany
Tlf.: +49 89 3200 6655
Celular: +49 151 1537 3591
Correo electrónico: pio@eso.org

Connect with ESO on social media

Esta es una traducción de la nota de prensa de ESO eso1819.

Acerca de la nota de prensa

Nota de prensa No.:eso1819es-cl
Nombre:ESO 325-G004
Tipo:Early Universe : Cosmology
Facility:Very Large Telescope
Instruments:MUSE
Science data:2018Sci...360.1342C

Imágenes

Imagen de ESO 325-G004
Imagen de ESO 325-G004
Diagrama del efecto de lente gravitatoria en galaxias distantes con formación estelar
Diagrama del efecto de lente gravitatoria en galaxias distantes con formación estelar
Dos métodos para medir la masa de una galaxia
Dos métodos para medir la masa de una galaxia
Cúmulo de galaxias Abell S0740
Cúmulo de galaxias Abell S0740

Videos

ESOcast 166 Light: Nueva prueba de la relatividad general de Einstein (4K UHD)
ESOcast 166 Light: Nueva prueba de la relatividad general de Einstein (4K UHD)
Ilustración animada de un objeto masivo distorsionando el espacio-tiempo
Ilustración animada de un objeto masivo distorsionando el espacio-tiempo
Panorámica sobre ESO 325-G004
Panorámica sobre ESO 325-G004
Entrevista con Thomas Collett sobre esta investigación
Entrevista con Thomas Collett sobre esta investigación

Ver también