Press Releases 2002

Subscribe to esonews mailing list.
eso0218-en-au — Organisation Release
Heavens Open Up for UK Astronomers
8 July 2002: A significant milestone for British and European science occurred today (July 8, 2002) when the Council of the European Southern Observatory (ESO) met in London. At this historical meeting, the United Kingdom was formally welcomed into ESO by the nine other member states.
eso0217-en-au — Science Release
Young Stars in Old Galaxies - a Cosmic Hide and Seek Game
26 June 2002: Combining data from the NASA/ESA Hubble Space Telescope (HST) and the ESO Very Large Telescope (VLT) , a group of European and American astronomers [2] have made an unexpected, major discovery. They have identified a huge number of "young" stellar clusters , only a few billion years old [3], inside an "old" elliptical galaxy (NGC 4365), probably aged some 12 billion years. For the first time, it has been possible to identify several distinct periods of star-formation in a galaxy as old as this one. Elliptical galaxies like NGC 4365 have until now been considered to have undergone one early star-forming period and thereafter to be devoid of any star formation. However, the combination of the best and largest telescopes in space and on the ground has now clearly shown that there is more than meets the eye. This important new information will help to understand the early history of galaxies and the general theory of star formation in the Universe.
eso0216-en-au — Photo Release
In Tarantula Territory
7 June 2002: The largest emission nebula in the sky, the Tarantula Nebula (also known as NGC 2070 or 30 Doradus) is located in the Large Magellanic Cloud (LMC), one of the satellite galaxies to our own Milky Way system. Seen far down in the southern sky at a distance of about 170,000 light-years, this beautiful nebula measures more than 1000 light-years across and extends over more than one third of a degree, almost, but not quite the size of the full moon. It received its descriptive name because of the unusual shape.
eso0215-en-au — Science Release
Ultrabass Sounds of the Giant Star xi Hya
15 May 2002: About 30 years ago, astronomers realised that the Sun resonates like a giant musical instrument with well-defined periods (frequencies). It forms a sort of large, spherical organ pipe. The energy that excites these sound waves comes from the turbulent region just below the Sun's visible surface.
Observations of the solar sound waves (known as "helioseismology") have resulted in enormous progress in the exploration of the interior of the Sun, otherwise hidden from view. As is the case on Earth, seismic techniques can be applied and the detailed interpretation of the observed oscillation periods has provided quite accurate information about the structure and motions inside the Sun, our central star. It has now also become possible to apply this technique to some solar-type stars. The first observations concerned the northern star eta Bootis. Last year, extensive and much more accurate observations with the 1.2-m Swiss telescope at the ESO La Silla Observatory proved that Alpha Centauri , a solar "twin", behaves very much like the Sun, and that some of the periods are quite similar to those in the Sun. These new observational data were of a superb quality, and that study marked a true break-through in the new research field of "asteroseismology" (seismology of the stars) for solar-type stars. But what about other types of stars, for instance those that are much larger than the Sun?
eso0214-en-au — Science Release
Infrared Images of an Infant Solar System
7 May 2002: Using the ESO 3.5-m New Technology Telescope and the Very Large Telescope (VLT) , a team of astronomers [1] have discovered a dusty and opaque disk surrounding a young solar-type star in the outskirts of a dark cloud in the Milky Way. It was found by chance during an unrelated research programme and provides a striking portrait of what our Solar System must have looked like when it was in its early infancy. Because of its striking appearance, the astronomers have nicknamed it the "Flying Saucer." The new object appears to be a perfect example of a very young star with a disk in which planets are forming or will soon form, and located far away from the usual perils of an active star-forming environment . Most other young stars, especially those that are born in dense regions, run a serious risk of having their natal dusty disks destroyed by the blazing radiation of their more massive and hotter siblings in these clusters. The star at the centre of the "Flying Saucer", seems destined to live a long and quiet life at the centre of a planetary system, very much like our own Sun. This contributes to making it a most interesting object for further studies with the VLT and other telescopes. The mass of the observed disk of gas and dust is at least twice that of the planet Jupiter and its radius measures about 45 billion km, or 5 times the size of the orbit of Neptune.
eso0213-en-au — Organisation Release
"Catch a Star!"
2 May 2002: This is the full title of an innovative educational project, launched today by the European Southern Observatory (ESO) and the European Association for Astronomy Education (EAAE). It welcomes all students in Europe's schools to an exciting web-based programme with a competition. It takes place within the context of the EC-sponsored European Week of Science and Technology (EWST) - 2002. This unique project revolves around a web-based competition and is centred on astronomy. It is specifically conceived to stimulate the interest of young people in various aspects of this well-known field of science, but will also be of interest to the broad public.
eso0212-en-au — Science Release
Most Distant Group of Galaxies Known in the Universe
9 April 2002: Using the ESO Very Large Telescope (VLT) , a team of astronomers from The Netherlands, Germany, France and the USA [1] have discovered the most distant group of galaxies ever seen , about 13.5 billion light-years away. It has taken the light now recorded by the VLT about nine-tenths of the age of the Universe to cover the huge distance. We therefore observe those galaxies as they were at a time when the Universe was only about 10% of its present age. The astronomers conclude that this group of early galaxies will develop into a rich cluster of galaxies, such as those seen in the nearby Universe. The newly discovered structure provides the best opportunity so far for studying when and how galaxies began to form clusters after the initial Big Bang , one of the greatest puzzles in modern cosmology.
eso0211-en-au — Science Release
The VLT Unravels the Nature of the Fastest Binary Star
15 March 2002: Observations with ESO's Very Large Telescope (VLT) in Chile and the Italian Telescopio Nazionale Galileo (TNG) on the Canary Islands during the past two years have enabled an international group of astronomers [1] to unravel the true nature of an exceptional binary stellar system. This system, designated RX J0806.3+1527 , was first discovered as an X-ray source of variable brightness - once every five minutes, it "switches off" for a short moment. The new observations have shown beyond doubt that this period reflects the orbital motion of two "white dwarf" stars that revolve around each other at a distance of only 80,000 km . Each of the stars is about as large as the Earth and this is the shortest orbital period known for any binary stellar system. The VLT spectrum displays lines of ionized helium, indicating that the presence of an exceedingly hot area on one of the stars - a "hot spot" with a temperature of approx. 250,000 degrees. The system is currently in a rarely seen, transitory evolutionary state.
eso0210-en-au — Organisation Release
"Sci-Tech - Couldn't be without it!"
13 March 2002: Seven of Europe's leading Research Organizations [1] launch joint outreach programme for the European Science and Technology Week at the Technopolis Museum in Brussels on 22 March. Their aim is to show Europeans how today's society couldn't be without fundamental research .
eso0209-en-au — Science Release
VIMOS - a Cosmology Machine for the VLT
13 March 2002: One of the most fundamental tasks of modern astrophysics is the study of the evolution of the Universe . This is a daunting undertaking that requires extensive observations of large samples of objects in order to produce reasonably detailed maps of the distribution of galaxies in the Universe and to perform statistical analysis. Much effort is now being put into mapping the relatively nearby space and thereby to learn how the Universe looks today . But to study its evolution, we must compare this with how it looked when it still was young . This is possible, because astronomers can "look back in time" by studying remote objects - the larger their distance, the longer the light we now observe has been underway to us, and the longer is thus the corresponding "look-back time." This may sound easy, but it is not. Very distant objects are very dim and can only be observed with large telescopes. Looking at one object at a time would make such a study extremely time-consuming and, in practical terms, impossible. To do it anyhow, we need the largest possible telescope with a highly specialised, exceedingly sensitive instrument that is able to observe a very large number of (faint) objects in the remote universe simultaneously. The VLT VIsible Multi-Object Spectrograph (VIMOS) is such an instrument. It can obtain many hundreds of spectra of individual galaxies in the shortest possible time; in fact, in one special observing mode, up to 6400 spectra of the galaxies in a remote cluster during a single exposure, augmenting the data gathering power of the telescope by the same proportion. This marvellous science machine has just been installed at the 8.2-m MELIPAL telescope, the third unit of the Very Large Telescope (VLT) at the ESO Paranal Observatory. A main task will be to carry out 3-dimensional mapping of the distant Universe from which we can learn its large-scale structure. "First light" was achieved on February 26, 2002, and a first series of test observations has successfully demonstrated the huge potential of this amazing facility. Much work on VIMOS is still ahead during the coming months in order to put into full operation and fine-tune the most efficient "galaxy cruncher" in the world. VIMOS is the outcome of a fruitful collaboration between ESO and several research institutes in France and Italy, under the responsibility of the Laboratoire d'Astrophysique de Marseille (CNRS, France). The other partners in the "VIRMOS Consortium" are the Laboratoire d'Astrophysique de Toulouse, Observatoire Midi-Pyrénées, and Observatoire de Haute-Provence in France, and Istituto di Radioastronomia (Bologna), Istituto di Fisica Cosmica e Tecnologie Relative (Milano), Osservatorio Astronomico di Bologna, Osservatorio Astronomico di Brera (Milano) and Osservatorio Astronomico di Capodimonte (Naples) in Italy.
eso0208-en-au — Science Release
UVES Investigates the Environment of a Very Remote Galaxy
11 March 2002: Observations with ESO's Very Large Telescope (VLT) have enabled an international group of astronomers [1] to study in unprecedented detail the surroundings of a very remote galaxy, almost 12 billion light-years distant [2]. The corresponding light travel time means that it is seen at a moment only about 3 billion years after the Big Bang. This galaxy is designated MS 1512-cB58 and is the brightest known at such a large distance and such an early time. This is due to a lucky circumstance: a massive cluster of galaxies (MS 1512+36) is located about halfway along the line-of-sight, at a distance of about 7 billion light-years, and acts as a gravitational "magnifying glass." Thanks to this lensing effect, the image of MS1512-cB58 appears 50 times brighter. Nevertheless, the apparent brightness is still as faint as magnitude 20.6 (i.e., nearly 1 million times fainter than what can be perceived with the unaided eye). Moreover, MS 1512-cB58 is located 36° north of the celestial equator and never rises more than 29° above the horizon at Paranal. It was therefore a great challenge to secure the present observational data with the UVES high-dispersion spectrograph on the 8.2-m VLT KUEYEN telescope. The extremely detailed UVES-spectrum of MS 1512-cB58 displays numerous signatures (absorption lines) of intergalactic gas clouds along the line-of-sight . Some of the clouds are quite close to the galaxy and the astronomers have therefore been able to investigate the distribution of matter in its immediate surroundings. They found an excess of material near MS 1512-cB58, possible evidence of a young supercluster of galaxies , already at this very early epoch. The new observations thus provide an invaluable contribution to current studies of the birth and evolution of structures in the early Universe. This is the first time this kind of observation has ever been done of a galaxy at such a large distance . All previous studies were based on much more luminous quasars (QSOs - extremely active galaxy nuclei). However, any investigation of the intergalactic matter around a quasar is complicated by the strong radiation and consequently, high ionization of the gas by the QSO itself, rendering an unbiased assessment of the gas distribution impossible.
eso0207-en-au — Organisation Release
German Foreign Minister Visits Paranal Observatory
7 March 2002: During his current tour of countries in South America, the Honourable Foreign Minister of Germany, Mr. Joschka Fischer, stopped over at the ESO Paranal Observatory Wednesday night (March 6 - 7, 2002).
eso0206-en-au — Photo Release
ESO's VLT Helps ESA's Rosetta Spacecraft Prepare to Ride on a Cosmic Bullet
26 February 2002: New images of Comet Wirtanen's 1-km 'dirty snowball' nucleus have been obtained with the ESO Very Large Telescope at Paranal (Chile). They show this object at a distance of approx. 435 million km from the Sun, about the same as when the Rosetta spacecraft of the European Space Agency (ESA) arrives in 2011. The new observations indicate that the comet has a very low degree of activity at this point in its orbit - almost no material is seen around the nucleus. This means that there will not be so much dust near the nucleus as to make the planned landing dramatically difficult.
eso0205-en-au — Organisation Release
Coming Home at Paranal
7 February 2002: The Paranal Residencia at the ESO VLT Observatory is now ready and the staff and visitors have moved into their new home. This major architectural project has the form of a unique subterranean construction with a facade opening towards the Pacific Ocean , far below at a distance of about 12 km. Natural daylight is brought into the building through a 35-m wide glass-covered dome, a rectangular courtyard roof and various skylight hatches. Located in the middle of the Atacama Desert, one of the driest areas on Earth, the Residencia incorporates a small garden and a swimming pool, allowing the inhabitants to retreat from time to time from the harsh outside environment. Returning from long shifts at the VLT and other installations on the mountain, here they can breathe moist air and receive invigorating sensory impressions. With great originality of the design, it has been possible to create an interior with a feeling of open space - this is a true "home in the desert". Moreover, with strict ecological power, air and water management , the Paranal Residencia has already become a symbol of innovative architecture in its own right. Constructed with robust, but inexpensive materials, it is an impressively elegant and utilitarian counterpart to the VLT high-tech facilities poised some two hundred meters above, on the top of the mountain.
eso0204-en-au — Photo Release
Of Rings and Volcanoes
31 January 2002: With its new NAOS-CONICA Adaptive Optics facility, the ESO Very Large Telescope (VLT) at the Paranal Observatory has recently obtained impressive views of the giant planet Saturn and Io, the volcanic moon of Jupiter. They show the two objects with great clarity, unprecedented for a ground-based telescope. The photos were made during the ongoing commissioning of this major VLT instrument, while it is being optimized and prepared for regular observations that will start later this year.
eso0203-en-au — Organisation Release
Multiple Eyes for the VLT
28 January 2002: The ESO Very Large Telescope (VLT) at the Paranal Observatory is being equipped with many state-of-the-art astronomical instruments that will allow observations in a large number of different modes and wavebands [1]. Soon to come is the Fibre Large Array Multi-Element Spectrograph (FLAMES) , a project co-ordinated by ESO. It incorporates several complex components, now being constructed at various research institutions in Europe and Australia.

One of these, a true technological feat, is a unique system of 15 deployable fibre bundles, the so-called Integral Field Units (IFUs) . They can be accurately positioned within a sky field-of-view measuring no less that 25 arcmin in diameter, i.e., almost as large as the full Moon . Each of the IFUs looks like an insect's eye and images a small sky area (3 x 2 arcsec 2 ) with a multiple microlens. From each IFU, 20 narrow light beams are sent via optical fibres to an advanced spectrograph. All 300 spectra are recorded simultaneously by a sensitive digital camera.

A major advantage of this technique is that, contrary usual spectroscopic observations in which spectral information is obtained along a (one-dimensional) line on the sky, it now allows (two-dimensional) area spectroscopy . This will permit extremely efficient spectral observations of many celestial objects, including faint galaxies, providing detailed information about their internal structure and motions. Such studies will have an important impact on our understanding, e.g., of the early evolution of galaxies , the main building blocks in the Universe.

The IFUs have been developed by a team of astronomers and engineers [2] at the Observatoire de Paris-Meudon. All IFU components are now at the ESO Headquarters in Garching (Germany) where they are being checked and integrated into the instrument [3].
eso0202-en-au — Photo Release
VLT Images the Horsehead Nebula
25 January 2002: A new, high-resolution colour image of one of the most photographed celestial objects, the famous "Horsehead Nebula" (IC 434) in Orion, has been produced from data stored in the VLT Science Archive. The original CCD frames were obtained in February 2000 with the FORS2 multi-mode instrument at the 8.2-m VLT KUEYEN telescope on Paranal (Chile). The comparatively large field-of-view of the FORS2 camera is optimally suited to show this extended object and its immediate surroundings in impressive detail.
eso0201-en-au — Organisation Release
ESO PR Highlights in 2001
3 January 2002: The year 2001 brought further success to European Astronomy and ESO. All of the four 8.2-m Unit Telescopes of the Very Large Telescope (VLT) are now in regular use and the VLT Interferometer (VLTI) had "first fringes" early in the year. The first tests were made with two small telescopes and later the light beams from two of the large telescopes were combined. The first scientific observations proved the extraordinary stability of the complex VLTI system and already produced excellent results. The Adaptive Optics technique was introduced at the VLT when the new NAOS-CONICA instrument had "First Light" in November. The sharpest-ever VLT images were obtained and immediately demonstrated the enormous potential for exciting front-line research programmes with this new facility.
Showing 21 to 38 of 38